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ABSTRACT

This report addresses a partially supervised classification problem, especially
when the class definition and corresponding training samples are provided a
priori only for just one particular class. In practical applications of pattern
classification techniques, a frequently observed characteristic is the heavy, often
nearly impossible requirements on representative prior statistical class
characteristics of all classes in a given data set. Considering the effort in both
time and man-power required to have a well-defined, exhaustive list of classes
with a corresponding representative set of training samples, this "partially"
supervised capability would be very desirable, assuming adequate classifier
performance can be obtained.

Two different classification algorithms are developed to achieve simplicity in
classifier design by reducing the requirement of prior statistical information
without sacrificing significant classifying capability. The first one is based on
optimal significance testing, where the optimal acceptance probability is
estimated directly from the data set.

In the second approach, the partially supervised classification is considered as a
problem of unsupervised clustering with initially one known cluster or class. A
weighted unsupervised clustering procedure is developed to automatically define
other classes and estimate their class statistics.

The operational simplicity thus realized should makes these partially supervised
classification schemes very viable tools in pattern classification.
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CHAPTER 1

INTRODUCTION

1.1 Information and Pattern Classification in Remote Sensing

For decades, the technology of remote sensing has been successfully applied in

many interdisciplinary applications of Earth observational data. Pattern

classification methods have had a major role in applying remote sensing

technology. A pattern classification system can be described generally as in

following schematic.

sooso, Iou o,_  ,s,on

Figure 1.1 General Schematic of Pattern Classification.

The incoming information-bearing data are analyzed and classified into one of

the pre-defined categories. To have a proper classification of given data, one

needs to decide what classifier to employ and which features to use in the

classification. A well-defined, informative, and exhaustive list of classes, and a

representative set of training samples from which the statistical characteristics of

all classes can be estimated is essential.

- 1 -



1 Introduction

If prior knowledge about the statistical characteristics of the categories or classes

is available, usually in terms of training samples, the classifier is referred to as

"supervised." The major portion of prior knowledge is often in the form of training

samples with known class labels. In this case, the class statistics are estimated

from the available set of labeled training samples. When there is no prior

knowledge, then, the classifier is referred to as "unsupervised." In many cases,

the training samples are available only for a subset of classes, or, training

samples are gathered only for those particular classes. Considering the

expensive process of gathering training samples in both man-power and time,

this situation is not uncommon in practice especially when one needs to identify

only a subset of classes. It can be referred as a "partially supervised"

classification problem.

1.2 Design of Partially Supervised Classifiers

In practical applications of pattern classification techniques, it is not unusual to

confront a task in which only a particular subset of classes, for which training

samples are available, are desired to be recognized or identified. A design of

conventional supervised classifier requires training samples for all the classes in

the given data in order to perform optimally. Considering the effort in both time

and man-power required to have a well-defined, exhaustive list of classes with a

corresponding representative set of training samples, this "partially" supervised

capability would be very desirable, assuming adequate classifier performance

can be obtained. This report addresses the partially supervised classification

problem, especially when the class definition and corresponding training samples

are provided a priori only for just one particular class.

Two different approaches are investigated. The first one is based on optimal

significance testing, where the optimal acceptance probability is estimated

directly from the data set. In the second approach, the partially supervised

classification is considered as a problem of unsupervised clustering with initially

one known cluster or class. The definitions and statistics of the other classes are

automatically developed through a weighted unsupervised clustering procedure

which is developed to keep the cluster corresponding to the "class of interest"

from losing its identity as the "class of interest." Once all the classes are



1 Introduction

developed, a conventional relative classifier such as a maximum likelihood

classifier is used in the classification.

Even though the partially supervised classification algorithms are to perform at

best comparable to one in which all the classes and statistical characteristics are

available, considering the time and effort required for collecting ground truth, or

training samples required for defining all the existent classes in the given data

set, this will be very useful in practice when a data-analyst is interested in

identifying only samples belonging to a certain class.

1.3 Organization of the Report

The outline of this report is as follows.

Chapter 2 addresses an absolute classification approach based on the optimal

significance testing where the optimal accept probability is estimated from the

given data set without user's supervision.

In Chapter 3, the problem of partially supervised classification is formulated as

that of a relative classification with only one a priori known class. Weighted

unsupervised clustering algorithm is investigated for unsupervised development

of class definition and statistical characteristics necessary succeeding relative

classification. Following the experimental results are conclusions and

suggestions for further research regarding the design problem of partially

supervised classifiers.

3
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CHAPTER 2

PARTIALLY SUPERVISED CLASSIFICATION

WITH OPTIMAL SIGNIFICANCE TESTING

2.1 Introduction

Successful classification of given data sets requires a proper design of

classifiers to be employed. The design or training of classifiers is performed

using prior information which is usually gathered in the form of training samples.

The number of training samples necessary is dependent on the number of

features and the number of classes. Generally, the process of obtaining training

samples is very expensive in terms of both time and manpower. In practical

applications of pattern classification techniques, a frequently observed

characteristic is the heavy, often nearly impossible requirements on

representative prior statistical class characteristics of all classes in a given data

set.

Other _her

__)_ple to be classified

_.._._ Class of Interest

(a)

Class 2 _ass 3

_/_mple to be classified

_ Class l

(b)

Figure 2.1 Two Different Classification Schemes. (a) Absolute Classification
Scheme. (b) Relative Classification Scheme.
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2 Optimal Signilicance Testin9

Broadly speaking, classification analysis schemes can be dichotomized into two

different categories, one being based on an absolute classification scheme and

the other based on a relative classification scheme. Classifiers based on the

absolute scheme, such as a parallelepiped classifier (Richards 86), or a

scheme based upon a known absorption feature for a specific material, classify

data samples on an absolute basis, i.e., without regard to the spectral

responses of other materials or classes which may be in the scene. In such

cases, class definition through training samples is required only for the

particular class under consideration. There may be many applications where

one wants to recognize only a single class of pixels. For example, one might be

interested in finding only the pixels belonging to a class, "corn," etc. This

absolute classification scheme is very attractive in this case.

The scheme in the second category is "relative classification" where class

decisions are made on a relative basis. The maximum likelihood classifier, one

of the most widely used relative classifiers, assigns a pixel to the class which

has the largest likelihood value relative to other classes. Therefore, even if only

one class is of interest, training samples must be obtained for all other classes

also to adequately train the classifier. The necessity of supplying training

samples for, or otherwise defining all other classes can be an onerous

shortcoming especially when there are large numbers of classes and/or

features to deal with. While a properly designed relative classifier can nearly

always provide better performance, and is very much less sensitive to many

unmanageable factors, e.g., atmospheric conditions, calibration, etc., the

operational simplicity of the absolute scheme may make it the scheme of choice

in many instances.

This report addresses the design problem of partially supervised classifiers,

especially when the class definition and corresponding training samples are

provided a priori for only one particular class as in the absolute classification

schemes. Two different approaches are investigated. The first one is based on

optimal significance testing. The investigation of this approach addresses the

problem of estimating, without supervision by the data-analyst, an optimal

significance level, or equivalently, an optimal acceptance probability, which is

an indispensable element in significance testing.

_



2 Optimal Significance Testing

In the second approach which will be introduced in the next Chapter, the

advantages of both a reduced requirement on obtaining training samples in the

absolute classification and the potentially robust and powerful discriminating

capability of a relative classifier are sought by developing an automatic

mechanism of extracting statistical information corresponding to an "others"

class without recourse to the training samples supplied by analyst. That is, the

classification algorithms proposed can develop class definitions and

corresponding class statistics, requiring the user to supply prior knowledge only

pertaining to the particular class under consideration.

The organization of this Chapter is as follows. After a brief introduction in

Section 2.2 on a partially supervised classification approach based on

significance testing, Section 2.3 address on an optimal significance testing

procedure where an estimating algorithm of an optimal acceptance probability

with a given optimality criterion is presented. Section 2.4 shows the

experimental results of this optimal significance testing in the context of the

partially supervised classification problem.

2.2 Partially Supervised Classification with Significance Testing

Significance testing is a widely used technique in various applications of

statistical analysis, such as classification, or object detection (Therrien et al. 86).

It is especially useful in such problems as the single hypothesis problem

(Fukunaga et aL 87, Quatieri 83) where one is to identify a particular class of

objects among others with only statistical information pertaining to those objects

of interest. This kind of problem can arise when defining all the classes and

gathering corresponding statistical information is impossible, or very expensive

in terms of time and manpower. Examples of applying significance testing

techniques include target detection, object detection out of various backgrounds

(Quatieri 83), texture detection, cloud detection, fault or anomaly detection in

diagnostic monitoring (Bello 92).

Significance testing can be used for partially supervised classification when

there is only one class of interest and the class definition and it class statistics

are available a priori only for that class. Note that significance testing is based

on the absolute classification scheme in Fig. 2.1 .(a).

- 7 -
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One of the important elements in significance testing is the acceptance

probability (or, significance level) which must be provided by the data analyst

usually in such a way that the type I (i.e., omission) error rate is kept within a

pre-specified level (Drake 67). Obviously, omission error is not necessarily the

only relevant criterion to consider in determining a suitable acceptance

probability, and there are many other possible optimality conditions. For

instance, the acceptance probability could be selected on the basis of the

Bayes minimum error criterion. The criteria used in the minimax test, or

Neyman-Pearson test (Van Trees 68) might also be used in selecting the

desired acceptance probability.

Unfortunately, lack of prior statistical information other than that of the particular

class of interest may prevent directly applying conventional procedures used in

hypothesis testing. The commission error, or type II error can not be easily

evaluated unless the relative distribution of all classes in the given data set is

available. Note that a mixture density estimates of the feature vectors can give

an estimate of the probability density of the "others" class if the prior probability

of the class of interest is known. For significance testing, requiring only some

appropriate measure of the distances of samples from the mean of the class of

interest, it suffices to estimate a one dimensional mixture probability density of

the distances, not the multidimensional features vectors.

In the following is presented an algorithm which can automatically estimate the

optimal acceptance probability from the given data set under the selected

optimality conditions, such as Bayes total classification error, minimum class-

averaged classification error, or the generalized total classification error criteria.

With this estimated optimal acceptance probability, classification can be

performed to identify the class of interest.

This automatic estimation of the proper acceptance probability will be

doubtlessly desirable, at least to the user with little prior knowledge about the

data set. The algorithm to be proposed in this chapter can also be applied to the

case where the specific class of interest consists of several sub-classes. When

there are a large number of constituent sub-classes of the given class of interest

and the sample distributions of the sub-classes are quite different from each

other, this automatic estimation capability should be very handy, since one

I



2 Optimal Siqnificance Testinq

doesn't need to undertake the manual selecting process of an acceptance

probability for each sub-class.

2.3 Optimal Significance Testing

Suppose there is a data set, X - {Xl, ---, XN} with N samples. Each data point, x i,

is a q-dimensional feature vector (q > 1). It is assumed that one is only

interested in identifying a single class which is denoted by Cint, i.e.,

discriminating between it and the "others" class, denoted by Cothers. The "others"

class might consist of several classes none of which is one's interest. Prior

statistical knowledge is assumed to be available only for the class of interest.

Let fx(xl C_nt)and fx(X I Cothers) be the probability density functions of classes Cint

and Cothers , respectively. The prior probabilities of Gin t and Cothers are indicated

by Eint and/1;others. It is assumed either to know the density function fx(X I Cint), or,

to have a set of representative training samples of Cint from which a reasonably

accurate estimate of fx(Xl Cint) can be made. In general, fx(Xl Cothers), /lint and

/[others are not known other than the fact that Eint + /_others = 1. The mixture

probability density, denoted as fx(x), is written as,

fx(x) = Eint fx(Xl Cint) +/l;others fx(xl Cothe,s)

where, 0 < Eint,/I;others < 1,/_int + /_others = 1

(2.1)

Even though the following derivations do not require any specific family of

probability density functions for Cint, multivariate normality will be assumed for

Gin t for simplicity's sake. Generalization to other probability density functions is

straightforward. Furthermore, without loss of generality, Gin t can be assumed to

have a zero mean, denoted by Oq, and an identity covariance matrix, denoted

by Iqx q. This standard multivariate normal distribution will be denoted by

MVN[Oq, Iqxq].

In significance testing, a single hypothesis H 1 :x e Cint, is tested against all

other alternatives. The degree of support for the hypothesis H 1 is measured with

test statistic, T(x) which is a function of feature vector x, x e X. With fx(Xl Cint)

being MVN[Oq, Iqxq], a natural choice for the test statistic would be T(x) = xmx by

_



2 Optimal Significance Testin,q

which the significance test rejects sample x if T(x) > X. Once the test statistic is

selected, the threshold _ specifies the rejection region in the feature space.

O

"£;
rJ_

Figure 2.2

^ _a = (7,

rJ =

Threshold X= Corresponding to a Significance Level (1 - (z).;

T(x) = xTx and lx(X I Cint) is MVN[Oq, Iqxq].

Choosing an appropriate rejection region (or equivalently, the threshold ;L) is an

important problem which deserves further attention. The availability of the

necessary statistical characterization of Gin t enables control of the omission

error, denoted by _1, using,

_1 = P{T(x) > Z,_ I H1 } < 1 - (:z, 0 < _ < 1 (2.2.a)

The value, (1 - o0 defines the maximum allowable omission error and is often

called the significance level or rejection probability. The parameter (z will be

called the acceptance probability. The threshold associated with o_,denoted by

;L_,can be obtained by solving,

'_(_ fy(Y I Cint) dy = o_ (2.2.b)

where fy(Yl Cint) is the conditional distribution of y = T(x) = xTx, under the

hypothesis H 1. (The notation of H 1 and Cint will be used interchangeably). When

fx( x I Cint) is MVN[Oq, Iqxq], fy(y I Cint) is known to be the chi-squared distribution

with q degrees of freedom.

10



2 Optimal Significance Testing

Others _

Class of Interest

I I

I(o_2)

'i i\

_ _------- _

IREL

Figure 2.3 Decision Regions of the Class of Interest with Significance
Testing. ;An improper significance level may result in either an
excessive omission or commission error.; IRE L - the decision
region of a relative classifier, such as a maximum likelihood
classifier.; I(oq), 1(0_2) - the decision regions of significance
testing with levels (1-_1), (1-%), respectively.

While the omission error e 1 can be controlled within a certain value specified by

(1-(z) through eq. (2.2.a,b), the commission error, denoted by E2, is generally

very difficult to control, as discussed before, since its evaluation requires

frequently unavailable statistical knowledge about all alternatives. By

increasing the acceptance probability oq the omission error can be reduced, but,

at the same time, the commission will be increased.

The omission error plotted versus the acceptance probability has a slope of -1,

but the slope of commission error is dependent on the closeness of the

distribution of the "others" class to the "class of interest." To avoid potentially

excessive omission or commission errors, the acceptance probability o_ must be

carefully determined by checking the relative distribution of data samples with

respect to the class of interest. An automatic estimation capability of optimum

acceptance probability is thus very desirable.

Since the estimation problem of optimum acceptance probability will be

addressed in a similar fashion to the hypothesis testing, a brief review of a

simple binary hypothesis testing procedure (Van Trees 68) is worthwhile.

Assume a simple hypothesis test with two hypothesis H 1 and H2 from which one

is to be selected. The Bayesian framework requires two sets of parameters, Le.,

one set including prior probabilities associated with the hypothesis and the

11



2 Optimal Significance Testing

other set with associated costs. Each cost is associated with the corresponding

course of action as in Fig. 2.4.

All

Xint H 1 _/_ H1

others H2 _ H2

Figure 2.4 Prior Probabilities (/tin t, /tothers)and Costs Ali'S in a Binary

Hypothesis Test.; All refers to the cost given to accepting

hypothesis H i when HI is true.

Aij is the cost given to the action of accepting hypothesis H i when Hj is true. It is

quite logical to set All = A22 = 0, that is, no cost is assigned to a correct decision.

Without loss of generality, the other costs can be set as A21 = A • A12 with

proper A, A > 0, where A12 doesn't affect the design of the optimal test and thus,

can be dropped out in the average cost function. The optimal test can be

designed by minimizing the a posteriori expected cost given as,

EBayes = A Xin t E:1 +/l:others £2
(2.3)

E1 and £2 are the omission and commission error probability, respectively and

computed using fx(Xl Hi), the probability density function of x under H i, i = 1, 2,

as,

E1 =j'z2fx(X I H1) dx

E2=j'ZlfX(xl H2) dx

where, Z i is the decision region for H i, i= 1,2

Note that if (A, /l;in t, /[others) are known, then, an optimal Bayes minimum

expected cost test can be designed. It is well known that this test is the

likelihood ratio test (LRT) whose design requires selection of an appropriate

threshold, based upon parameters (A, Itin t, /tothers), which, in turn, requires

knowledge of ,£1 and e2 as functions of the threshold. In significance testing

which can be viewed as a problem of sing/e hypothesis testing, the optimal

- 12-



2 Optimal Si,qnificance Testing

acceptance probability can be obtained in a similar way to the simple binary

hypothesis counterpart. That is, instead of _1 and E2 as functions of the

threshold, they can be obtained as functions of the acceptance probability.

Unfortunately, the expression for commission error E2 in significance testing, is

ordinarily not readily available a priori, since the probability density function

under hypothesis H2 is not known. Nevertheless, estimating the commission

error function for a given data set is possible, as will be discussed in following

section. With the estimated ¢2, the same idea of simple binary hypothesis testing

mentioned above can be applied also to significance testing in estimating the

optimal acceptance probability.

2.4 Estimation of Optimal Acceptance Probability

In this section, an algorithm which can automatically estimate the optimal

acceptance probability by checking the actual relative data distributions is

presented. There can be many different optimality criteria for the acceptance

probability. For example, the acceptance probability can be selected solely on

the basis of the omission error or commission error, or, it can be selected based

on a criterion which is basically a weighted sum of omission and commission

errors. In this section, three different optimality conditions are considered in

selecting a proper acceptance probability.

2.4.1 Omission and Commission Errors as Functions of Acceptance Probability

Suppose there are N 1 samples belonging to Gin t in the data set X. N 1 is

unknown, in general. Then, in the data set X, there will be N 2 -N - N 1, data

points from the class Cothers. Assume the prior probabilities are,

N1 N2
Eint - N and /[others - N

The expected number of data points in X accepted with the acceptance

probability o_is denoted as N(e0 and written as a function of (x, 0 _<(x _<l, as,

13



2 OptimalSi,qnificanceTesting

N(_) - N j'0_a fy(S) ds
(2.4)

where fy(y) is the mixture probability density function of y, y = xTx, y > 0, and ;La

is the threshold corresponding to the acceptance probability o_in eq. (2.2.b). fy(y

I Cint) is similarly defined as a probability density function of y = xTx, X E Cint.

N(o_) is a monotonically increasing function of o_in the interval 0 _<o__<], since,

d_.¢ 1
_ > 0 (2.5.a)

do_ fY (2Lo_ I Cint)

and,

dot - L-_--aJ -> 0, 0 < o_< ! (2.5.b)

Although the mixture density fy (y), is not available a priori, it can be easily

estimated using the y values where y = xTx, x _ X. In a similar way, N 1(c¢) and

N2(_ ), the expected numbers of data points accepted with acceptance

probability o_, 0 __.(z < 1, and coming from Gin t and Cothers, respectively, are

written as,

Nl(O_) - N1 j'o_= fy(s[Cint) ds (2.6.a)

N2(_ ) - N2 ,,_o_¢ fy(SlCothers) ds (2.6.b)

fy(ylCothers ) is the density function of y's corresponding to Cothers. NI(G) and

N2((_ ) are also monotonically increasing in 0 < o____1. From the relations in eq.

(2.1) and eq. (2.2.b), Nl(e_) and N2(o_) are simplified as,

NI(O_) = _, N1 (2.7.a)

N2(o_) = N(c¢) - Nl(O_) = N(o_) - o_- N 1 (2.7.b)

Using eq. (2.5.b) and eq. (2.7.b), an upper bound of prior probability/I;in t can be

obtained as,

14 -



2 Optimal Significance Testing

, rain [ f,,,(y)]
/(int -< 0 < or, < 1 (2.8)

- - [fy(ylCint)J y = _a

Now, compute the omission and commission errors at acceptance probability co.

The omission error rate, denoted by _1(_), is obtained by dividing the number of

Gin t samples rejected at acceptance probability o_with N_.

N 1 - Nl(O 0
_1(o0 = N 1 = 1 - (z (2.9)

Similarly, the commission error rate, denoted by £2(0r,), is obtained by dividing

the number of accepted Cothers samples by N 2, with given acceptance

probability o_.

_2(o_) = N(o_) - (z • N 1 (2.10)
N-N 1

Note that, with respect to (_, ¢1((z) is a strictly decreasing function with slope -1

and _2(_) is a monotonically increasing function, but the actual rate of increase

of E2(o_) is dependent on the behavior of N((z). The evaluation of _2((z) generally

requires knowledge of N 1, or equivalently, the prior probability _inr

The optimal acceptance probability (z is dependent on the criterion which

assesses the optimality. In many situations, a simple average of omission and

commission errors,

1
El(e0 = _ [_1(0_) + ¢2((_)] (2.11.a)

serves as a good candidate for assessing optimality. Under the Bayesian total

probability error criterion, the optimal acceptance probability minimizes,

E2((:z) -=/tint _:1(_) +/(others E:2((Z) (2.1 1.b)

the sum of omission and commission errors weighted with the prior

probabilities. This weighting can be generalized by allowing different cost (or,

risk) between omission and commission errors as,

E3(o{,) - A-/(int £'1(0_) + /(others _2(_) (2.11 .c)

- 15-



2 Optimal Significance Testing,

Constant A, where A > 0, is the risk or cost on making omission errors relative to

the risk of making commission error being 1. The criteria in eq. (2.11 .a,b) can be

considered to be special cases of E3(o_). That is, E3(o0 with A = 1, is the same as

E2(o 0. Setting A =/_othershtint makes E3(o0 equivalent to E l((z). The criterion in

eq. (2.11.c) will be called the "generalized" total classification error criterion.

Note that identifying a specific single class, or detecting specific objects from the

background in a given scene can be considered as a two class classification

problem and a confusion matrix can be drawn as in Table 2.1. (Nll is a number

of Gin t samples correctly classified as Gin t and N22 is a number of Cothers

samples correctly classified as Cothers).

Table 2.1

Actual i CintClass Cothers

Confusion Matrix.

Assigned class

Cint I C°thers
Nll N1 - Nll

N2 - N22 N22 ,

Then the classification error probabilities of Gin t and Cothers are equivalent to the

omission and commission errors, respectively.

Nll

error probabilities of Gin t = 1 - N--T

N22

error probabilities of Cothers = 1 - N2

Two criteria have been conventionally used in assessing classification

performance. One is the "overall classification error" which is computed as the

ratio of the total number of errors to the total number of samples in the given

data set. The other is the "class-averaged classification error," and it is a simple

average of the classwise classification errors. Notice that the overall

classification error is no more than a weighted sum of the classwise

classification errors according to the prior probabilities. Thus, it is equivalent to

- 16



2 Optimal Significance Testing

the total probability of error in eq. (2.11.b). By the way, the "class-averaged

classification error" is equivalent to eq. (2.11.a). The class-averaged

classification error criterion is a very useful indicator of classification

performance especially when there are large differences between prior

probabilities since the overall classification accuracy will be dominated by the

performance of the class having the dominant prior probability. In applying

significance testing, there will be many cases when the number of data points

belonging to one class is dominantly large than the others. In these cases, the

class-averaged classification error in eq. (2.11 .a) will be desirable in assessing

optimality.

2.4.2 Estimating Optimum Acceptance Probability

In following discussion, only the criterion in eq. (2.11.c) will be used since the

others can be derived as special cases of this criterion by setting an appropriate

value of A. The optimal acceptance probability _ can be obtained by minimizing

E3(o_ ) with respect to o_ over the interval, 0 < cz < 1. That is, by equating the first

order derivative of E3(oc ) to 0,

dcz = N N2 A • N 1

1 -dN(o_)

= N dec (I+A) • N1]=0

(2.12.a)

and checking the sign of the second order derivative in eq. (2.12.b) below, the

optimal value of (z which gives the minimum value of E3(_ ) can be found. Note

that solving eq. (2.12.a) requires, in general, knowledge of N 1, or, equivalently,

the prior probability _int.

d2E3((x) d2_2((x) 1 d2N((x)

d_2 = "%thers d(z.2 - N d(z 2 (2.12.b)

Since the second derivative of EI((_) is zero, eq. (2.12.b) is only affected by the

commission error, E2(cz). Substituting the first order derivative of N(cz) given in

eq. (2.5.b)into eq. (2.12.a) results in,
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N fy (;_,_)= (I+A)N 1 fy ( lC nt) (2.13)

The first order derivative of E3((x) being always positive in 0 _<(x < 1 indicates

that Nfy(Xo_) on the left side of eq. (2.13) is always larger than the right side,

(l+A)Nlfy(;LalCint) for all (x in the interval [0,1]. Since (I+A) > 1, this means that

the data points expected to be in the infinitesimal region (_(_, Z(x+ d;La) are

always more than the expected number of Cint samples in the region and thus,

considerable commission error will result no matter how restrictive the

acceptance probability is. Therefore, the optimum value of (x is expected to be 0.

On the other hands, the first order derivative of E3((x), being always negative in

the interval, 0 ___(x ___1, indicates, in the same token, that the data points

expected to be in the infinitesimal region (Xa, ;_(_+dZ(x) are always less than the

expected number of Cint samples in the region (which is weighted by (I+A)),

therefore, the possibility of commission error is very low. This will allow

acceptance probability (x to increase up to 1.

Since increasing e_ would not only decrease the omission error but also

increase simultaneously the commission error, other than these two extreme

cases, minimum points of E3((x) will be located where the degree of increase in

the weighted commission error starts to surpass the decrease of the weighted

omission error. The prior probabilities and relative cost A determine the actual

balancing between omission and commission errors. Due to the closed interval

of o_, [0,1], the minimum of E3(o_) always exists and so does the optimum (x, even

if there may be no solution satisfying eq. (2.12.b) and the positivity of eq.

(2.12.c). Suppose solutions satisfying these two conditions do exist, and denote

a set of those solutions as S.

d2E3((x)
S-{(x I dE3((x) =0 and

d(z d(z2
> 0, 0_<o__<1}

Then, each element in S will correspond to a (local) minimum of E3((z). The

global minimum can be selected by comparing the actual values of E3((x) at

different o_'s in S in the following way. Suppose (xi and (Xj are elements in S,

then, the difference, E3((xi) - E3((xj) can be written as,
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(2.14)E3(°_i)" E3(°_J) : N

where, Aij- [N(o_i) - N(o_j) - (o_ i - (Zj). (I+A) • N1]

By checking the signs of the Aij's , the acceptance probability which attains a

global minimum of E3((z ) can be selected from the set S. Notice that evaluating

eq. (2.14) requires the prior probability, _int, but, in the case of the class-

averaged classification error criterion, it can be evaluated even without knowing

/l;int since substituting A =/1;others//t;in t = N2/N 1 results in a quantity independent of

/I;int as,

N2
(I+A) N 1 = (1 +_) N 1 = N

This property of the class-averaged classification error criterion will be very

useful in actual application of this algorithm since the prior probabilities are

unknown in most problems.

2.4.3 Optimum Acceptance Probabilities for the Sub-Classes of the Class of

Interest

Frequently, one has a class of interest which consists of several sub-classes.

These sub-classes are components of the original class which is often referred

to as an "information class" (Swain 78). The term "information class" implies a

physically meaningful entity. One cannot always model the statistical

distribution of the given information class with a known simple distribution

function. In this case, the information class can be decomposed into several

sub-classes, each of which is described with a simple known probability density

function, such as the Gaussian distribution function. This decomposition of the

information class into a set of sub-classes can be accomplished using

clustering in the feature space (Swain 78). These sub-classes generally might

not correspond to any physically meaningful entity, since they are selected to

describe the data distributions of the information class in the feature space.

When there are several sub-classes belonging to one information class,

significance testing can be performed in following manner.
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x'
(N 1 , N 2 X z

(n 1, n 2)

(m 1, m2)

Figure 2.5 Division of Data Set X into Two Subsets, X1 and X2.; n1 and m1 are the
numbers of class-of-interest samples respectively in the subsets X1 and

X2. Similarly, n2 and m2 are the numbers of samples from the class
"others," found respectively in the subsets X1 and X2.

Suppose there are two sub-classes. Since the statistical characteristics of the

two sub-classes are assumed available, the given data set X can be divided

into two subsets, one for "sub-class 1" and the other for "sub-class 2" as in Fig.

2.4 by applying any classifier, for example, a maximum likelihood classifier.

Significance testing is applied to each subset to obtain samples which should

be accepted, and the union of samples accepted from each subset is the result

of significance testing applied to the given information class. In this approach,

the optimal acceptance probability is selected separately for each sub-class

according to the relative distributions of samples in the corresponding subset.

The estimating capability of the optimal acceptance probabilities for each sub-

class will certainly be useful when there are a large number of sub-classes and

the relative distributions of samples in each sub-class are quite different from

each other, since one doesn't need to undertake the manual selection process

of proper acceptance probability for each sub-class.

The optimality of the estimated acceptance probabilities can be assessed either

at the sub-class level, or at the information class level. If the acceptance

probabilities are selected to achieve the given optimality independently in each

sub-class, then they are said to be optimal at the "sub-class level." On the other

hand, the acceptance probabilities are called optimal at the "information class

level" if they attain the given optimality for the union of accepted samples from

the sub-classes. The acceptance probabilities optimal at the sub-class level do

not necessarily retain the same optimality at the information class level.

Suppose e_l and o_2, the optimal acceptance probabilities respectively for sub-

class 1 and 2, are to be estimated employing the generalized total probability of

error criterion of eq. (2.11 .c), written as E3((Xl,(X2), at the information class level.
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E3((Zl,Ot2) = A./_int 81((Zl,0r'2) +/[others £2(0_1,0t.2) (2.15)

where El(0tl,0t2) is the omission error of the given information class with ot1 and

ec2 for sub-classes 1 and 2. Similarly, 82(0_1,(Z2) iS the corresponding

commission error. Omission error e1(CCl,O_2)has two components. One is e_(cx]),

the omission error occurring in sub-class 1 and the other, ¢2(o_2), the same

omission error occurring in sub-class 2. Likewise, the commission error

C2(0t 1,0_2) can be computed with two components, r_(oq) and e_(o_2), commission

errors occurring respectively in sub-class 1 and 2.

81(0_I, _2) = nl el(°tl) + ml ez1((x2)
N]

_2(0_1, 0_2) = n2 81(0_1) + m2 82(0t2)
N2

(2.16.a)

(2.16.b)

After a few algebraic operations, E3(ot 1,(z2) in eq. (2.15) can be written in terms

of the criterion in eq. (2.1 1.c) evaluated at each sub-class as,

where,

E3(Otl,Ot2) - nl+n2 ml+m2N E3(°tl ) + N E3(°t2) (2.17.a)

E3(Otl) = A'r[ 1E]((ll) + /_ E_(O_I) (2.17.b)

E3(G2) = A'/_I c12(_2)+ _2 82(ot2) (2.17.C)

nl
/_I- nl + n2 and _l = 1- /_I

ml and /_2= 1- _2ln21- m I + m2

Note that minimization of eq. (2.17.a) can be achieved by minimizing E3(oh)

and E3(ot2) given in eq. (2.17.b,c) independently. Therefore, in the case of the

(generalized) total classification error criteria in eq. (2.11.b,c), estimating the

optimal acceptance probability independently for each sub-class at the sub-

class level always leads to the same optimality also at the information class

level. Hence, there is no inconsistency in the optimality for those cases. The

result in eq. (2.17.a) is also applicable to the class-averaged classification error

21



2 Optimal Significance Testing

criterion if the relative weight A is substituted by Eothers/_int • As seen in E3(o_1)

and E3(o_2) in eq. (2.17.b,c), this substitution of the A value doesn't lead to the

same class-averaged classification error criterion in sub-class 1, 2, unless the

following two equations are satisfied.

A • _ = _ and A. _ = _._ (2.18.a)

These two equations above can be satisfied if the following relation holds.

__1_= ml (2.18.b)
n2 m2

Therefore, unless eq. (2.18.b)is satisfied, optimality in the sense of the class-

averaged classification error criterion at the information class level cannot be

achieved by applying the same criterion to each sub-class. However, optimality

based on the class-averaged classification error criterion can be accomplished

at the level of the information class if the generalized total classification error

criterion with A satisfying eq. (2.18.a) is used in each sub-class.

2.4.4 Probability Density Function Estimation

In computing an optimum acceptance probability c¢, density estimation is

required to compute N(_) in eq. (2.4). Since N(o_) is the expected number of

samples accepted with acceptance probability o_, it can be obtained, in the most

simplistic way, by counting the number of samples whose test statistic is less

than the threshold _.¢ while varying the acceptance probability o_.The first order

derivative of N(o_) is then obtained by numerical differentiation of N(o_). Even

though this method is quite simple and fast enough, it has some drawbacks. For

example, the counting nature in estimation causes discontinuities in N(e_) and

consequently, brings difficulties in calculating the derivative. Furthermore,

different ways of discretizing the interval [0,1] of o_ in counting samples can

produce different estimates of N(o_). This is similar to the problem of histogram-

based density estimation where the estimated density can vary depending on

bin definition (Silverman 86). Due to these considerations, the proposed

algorithm uses a kernel-based Parzen density estimate which has been not

only rigorously studied but also has been widely applied in many fields of
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application. If the kernel function is denoted as K(o), then, the probability density

estimate fy(S), S > 0 can be written as,

1
(2.19)

t+oo

where, J_o K(s)ds = 1

The summation in eq. (2.19) is carried out for all y's, y = xTx, x E X and N is the

total number of data points in X. The variable h in eq. (2.19), is called the

window size (or, smoothing parameter) of the kernel function. This determines

how much smoothing is allowed in estimating the density. Selecting an

appropriate window size h can be cumbersome sometimes since an improper

window size h can result in either under-smoothing, or over-smoothing which

might cause some degree of uncertainty in locating the optimal acceptance

probability. It is possible to compute an optimal window size which is dependent

on the kernel function, dimensionality and the number of samples N (p.86 in

(Silverman 86)).

Since the values of y are all non-negative, the domain of the density estimation

is [0,+oo). In this case, the use of a symmetric kernel function such as the

Gaussian kernel function will result in underestimation near zero since there are

no samples in the negative region. This underestimation can be avoided by

using positive reflection techniques (Boneva et al. 71) in which a new density

estimate is obtained with an augmented set of y's. Suppose fy(s) is the density

estimate acquired with the augmented data set. Then, the desired density

estimate, fy(S), in the region of s > 0, is obtained by doubling the density

estimate acquired with the augmented data set as,

fy (s) = ? fy(s) if s > 0

fy (s) = 0 otherwise

The augmented data set is obtained by including the reflected values of y's

against the origin 0 additionally in the original set of y values.

- 23 -



2 Optimal Si,gnificance Testing

2.5 Experiments and Discussion

To test the performance of the proposed estimating algorithm for optimal

acceptance probability in significance testing, experiments were carried out with

both simulated and real data. In the case of simulated data, several bivariate

Gaussian data sets were generated to simulate data sets with a wide range of

separability. In the case of real data, Landsat Thematic Mapper (TM) data were

used. For the optimality assessment, the class-averaged classification error and

the total classification error criterion were used.

2.5.1 Experiment with Simulated Data

For a test with simulated data, 1000 samples were generated for the class of

interest to be bivariate Gaussian (i.e., the dimensionality q = 2) with zero mean

and an identity covariance matrix. For the class "others," 2000 samples were

generated to be bivariate Gaussian with a mean [d,0] T , d > 0, and an identity

covariance matrix.

N1Tsamples

, )
N 2 samples

Figure 2.6 Simulated 2 Class, 2 Dimensional Gaussian Data Sets.; C_nt: 1000

samples in MVN[Oq, Iqxq], Corbels : 2000 samples in MVN[[d,0] T, Iqxq],

(N 1 = 1000, N2 = 2000, q=2).

With this set-up, the exact amount of overlap between the two distributions can

be calculated. The term "overlap" is defined here as the volume which is shared

by the two probability density functions. That is, when the distance between two

classes is d, the overlap between the two classes is given as,
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1 S2fd/2 exp(-_ ) dsOverlap(d) = 1 - q-_-_- Jo

By varying d, the distance between the two class means, data sets with different

degrees of overlap can be simulated, d was increased from 0.1 to 5 in steps of

0.1. If d = 0.1, there is 96.02% of overlap between the two distributions, and in

the case of d=5, there is only 1.24% of overlap. To avoid any random error due

to the data generation process and its effect on evaluating the experimental

result, data sets were generated 50 times with different seed numbers, and the

averaged result was used in comparison.

I00

Figure 2.7

,

0.0

d=O.5

d=1.0

d=l.S

d=2.0

d=2.5

d=3.0

d=3.5

d=4.0

d=4.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Acceptance Probability

Omission and Commission Errors with Respect to Acceptance
Probability.; d is the distance between two class means.

At first, various different acceptance probability oCs were examined in

significance testing by increasing e_from 0.01 to 0.99 in steps of 0.01 to see its

dependence on o_ as shown in Fig. 2.7. As expected, the omission error

decreased linearly with respect to the acceptance probability with slope = -]. In

the case of commission error, the slope of increase depended on the degree of

overlap between the two distributions. When d = 0.5 which resulted in 80.26%

of overlap between the two distributions, the commission error increased almost

linearly with respect to e_. This is due to the substantial closeness of the two

distributions. When there was effectively no overlap such as in the case d = 4.5
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2 Optimal Significance Testin,q

(2.44% of overlap), the commission error stayed very low, virtually insensitive to

e_. The resulting class-averaged error in eq. (2.11.a) and the total probability

error in eq. (2.11.b) are shown in Fig. 2.8 and 2.9.

t.,
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L.

O
o=,i

=1
_J

tJ_
t#3

m

"el

L
_J

_J

d=O.$

40 r _ _ _'_ p d=2.0

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d=3.5

d=4.0

d=4.$

1.0

Acceptance Probability

Figure 2.8 Class-Averaged Error versus Acceptance Probability a.; d is the
distance between the two class means.
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0

0.0
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Figure 2.9 Total Classification Error versus Acceptance Probability c_.; d is the
distance between the two class means.

26 -



2 Optimal Significance Testing

In the cases of d=0.5 and d=l.0, the total probability error and the class-

averaged error had very gentle slopes.

To make a comparison with the estimated values, optimal acceptance

probabilities were manually selected by changing o_from 0.01 to 0.99 in steps of

0.01 and choosing the best one based on the selected optimality criterion.

These manually selected were denoted by "scanned" values and compared

with the estimates obtained by the proposed algorithm.

The estimated acceptance probabilities with both the class-averaged and the

total classification error criteria are shown in Fig. 2.10. When applying the total

classification error criterion, the true value of prior probabilities were used.

e_
N
o=m

,.D

.t=
O

d:

ca.

.<

1.0

0.8

0.6

0.4

0.2

0.0

0.0

With class-averaged

classification error criterio_ _ _

if" /

/ I ......... h--0.2
1' I ......... h---O.3

.#' I.... h=0.4
.... , .... , .... , .... , .... , .... , ....

d, Distance Between Class Means

Figure 2.10 Estimated Optimal Acceptance Probability versus d, the Distance
Between Two Class Means.; Solid lines show the manually selected
acceptance probabilities. Dotted lines show the estimated optimal
acceptance probabilities using the proposed method, h is window size.

The density estimate required for N(o0 was obtained employing a Gaussian

Kernel-based parzen density estimate with the data set augmented by positive

reflection (Boneva et al. 71). Even though an appropriate kernel window size h

was computed as 0.2 based on (Silverman 86), several different values were

also tested to see its effect on the estimated acceptance probabilities. In Fig.

2.10, the estimated values followed very closely those manually selected

especially when the distance d was large. The optimal acceptance probability
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based on the total classification error criterion was near 0 when d was not large

enough, since the total classification error was an increasing function of

acceptance probability for those small d values as seen in Fig. 2.9. For

example, when d < 1.0, the number of commission errors increases almost at

the same rate as that by which omissions decreased due to the significant

amount of overlap between the two class distributions as seen in Fig. 2.7.

Because the prior probability of Gin t is less than that of Cothers, the omission

error is weighted less than the commission error under the total classification

error criterion. This explains why the acceptance probabilities when d < 1.0,

were very small under the total classification error criterion. When d < 1.0 with

the class-averaged classification error criterion, some degree of difference was

observed between the estimated and the manually selected value. Since the

curve of class-averaged classification error was nearly flat when d < 1.0 as seen

in Fig. 2.8, an exact location of the minimum of the class-averaged classification

error was hard to pinpoint and thus, there was a relatively large standard

deviation not only in the estimated but also in the manually selected optimum o_

values as shown in Fig. 2.11.

o.,_.

0.3

0.2

_ o.o ',
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

With class-averaged With total classification
\ classificationerror criterion error criterion

_, ................ Scanned ....

Estimated

d, Distance Between Class Means

4.5 5.0

Figure 2.11 Standard Deviation of Optimal Acceptance Probabilities versus the
Distance Between the Two Class Means.; Window size h=0.2.

In spite of those discrepancies in estimated o_ values when d < 1.0, there was

not much difference in the resulting class-averaged classification errors. Note

that the slope of the total classification error curve in Fig. 2.9 was nearly zero in

the lower acceptance probability region. For the same reason, in Fig. 2.11, there
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was observed also relatively large deviations under the total classification error

criterion in the region 1.0 < d < 2.0.

Since less than 1% of difference in classification errors were observed under

both optimality error criteria by varying the window size, classification results

are shown only for h=0.2 in following Fig. 2.12 and 2.13.

......... Scanned
-- Estimated
.......... REL-ML

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

d, Distance Between Class Means

Figure 2.12 Class-Averaged Classification Error versus the Distance Between the
Two Class Means.; Acceptance probabilities were estimated with the
class-averaged classification error criterion. "REL-ML" is a result with the
relative maximum likelihood classifier. Window size h -- 0.2.
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Figure 2.13 Total Classification Error versus the Distance Between the Two Class
Means.; Acceptance probabilities are estimated with the total
classification error criterion. "REL-MAP" is a result with the relative
maximum a posterioriclassifier. Window size h = 0.2.

The significance test deals with only the values of the selected test statistic,

therefore there is a dimensionality reduction of feature vectors to one-
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dimensional space of the selected test statistic, and this causes loss of valuable

information in classification. To see the effect of dimensionality reduction, a

(relative) maximum likelihood classifier (denoted as "REL-ML") and a maximum

a posteriori classifier (denoted as "REL-MAP") were designed in the original q-

dimensional space with known class statistics of Gin t and Cothers. Their

classification results were also included in Fig. 2.12 and 2.13 to see the effect of

dimension reduction. Under both optimality conditions, the estimated optimal

acceptance probabilities resulted in almost the same performances with

manually selected values. There was a maximum of about 12% error increase

due to the dimensionality reduction.

To see the effect of the data reflection on estimating optimal acceptance

probabilities, the same experiment was performed, but without data reflection.

Density estimation without reflected data would be expected to introduce

underestimation of the probability density fy(y) near y = 0 due to using a

symmetric kernel function with only positive y values. This underestimation in

fy(y) and subsequently in N(o0 near y = 0 would cause underestimation of

commission errors, therefore, the optimal acceptance probability estimates

would be expected to be larger than they should be. Since the Gaussian kernel

function rapidly decreases as its argument becomes larger, this effect of under-

estimation would exist only in the region near y=0. Figure 2.14 shows the

differences in estimated acceptance probabilities, computed as, Or.without positive

reflection " °r'with positive reflection.

0.3 "

.=_ 0.2

L.

o.1

u 0.0

..................i..... i

................. h=O.l
h=0.2

.... h=0.3
.......... h=0.4

h=0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

d, Distance Between Class Means

Figure 2.14 Differences in Acceptance Probabilities with and without Data
Reflection under the Total Classification Error Criterion.; h is the

kernel window size.
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No difference was observed with the class-averaged classification error

criterion. However, there were differences in the case of the total classification

error criterion. As seen in Fig. 2.14, the estimated optimal acceptance

probabilities without data reflection were larger by as much as 0.2 compared tO

those with data reflection in the region of d < 1.5. However, there was no

significant difference when d > 1.5. Greater differences were observed as the

window size h became larger, since the large window size would have more

reflected samples in the summation of the kernel function values. The reflection

technique in estimating a probability density function is observed to be

necessary if the acceptance probabilities are expected to be near zero.

,.--,_ $ _k ............ h=O.l'
"_ t. __ *---" h=0.24 -F° ....

_ 3 _i "_ h=0.4

h=0.5

_ _, . ........

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

d, Distance Between Class Means

Figure 2.15 Corresponding Differences in the Total Classification Errors.

Figure 2.15 shows the corresponding differences in the total classification error

without data reflection. The discrepancies in acceptance probabilities due to

lack of data reflection in Fig. 2.14 cause as much as 5% difference in the total

classification error in the region d < 1.5.

2.5.2 Experiment with Real Data

For a test with real data, a Landsat Thematic Mapper data set which was

acquired over an agricultural area in Tippecanoe County, Indiana in July, 1986

was used with all seven features (i.e., the dimensionality q = 7). From the

available ground truth data, 4 different information classes - corn, soybeans,

wheat and alfalfa/oats - were identified. About 10% of the samples were

randomly selected from each information class to serve as training samples.
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The total number of training samples were 2124, and there were 21,924 test

samples. Figure 2.16 shows the July data set and Fig. 2.17 is the associated

ground truth map.

Band 1 (0.45 - 0.52 pm)

Band 4 (0.76 - 0.90 pm)

Band 2 (0.52 - 0.60 pm)

Band 5 (1.55 - 1.75 I_m)

Band 3 (0.63 - 0.69 I_m)

Band 6 (2.08 - 2.35 I_m)

Figure 2.16

Band 7 (10.4 - 12.5 _m)

July Thematic Mapper (TM) Data Set.
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Since the information classes might consist of several sub-classes, clustering

was performed on the training samples belonging to each information class to

obtain a set of constituent sub-classes, each of which can be described with a

multivariate normal distribution (Swain 78).

.%

, i._;

iii:

Figure 2.17
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Associated Ground Truth Map.
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Table 2.2 Training and Test Samples of Landsat Thematic Mapper Data.

Information Number of
Classes Sub Training Test

classes Samples Samples

Corn 2 913 9371

Soybeans 2 824 8455

Wheat 4 181 1923

Alfalfa/Oat 4 206 2175

Total 1 2 2124 21924

In a manner similar to the previous experiment with the simulated data, the

acceptance probability was increased from 0.01 to 0.99 in steps of 0.01 to see

how the omission and commission, class-averaged and total classification

errors would change with respect to acceptance probabilities. The graphs of

classification error versus acceptance probability are shown in Fig. 2.18 - 2.20.

The rate of decrease in omission error with respect to increasing acceptance

probability can give some indication of how representative the training samples

are. That is, if the training samples are very representative of the samples

belonging to that class, then, the omission error will decrease almost linearly

with respect to acceptance probability. The commission error curve also is able

to show how separable the given class of interest is from the others class. Sub-

class 2 of corn and sub-class 3 and 4 of wheat seemed to be much more

separable than the others since the commission error curves were virtually not

increasing with respect to increasing acceptance probability. Commission error

increased rather sharply in all sub-classes of soybeans and alfalfa/oats.
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Figure 2.18 Classification Errors versus Acceptance Probability in Significance
Testing With Landsat Thematic Mapper Data (Class corn and
soybeans). (a) Sub-class 1 of corn. (b) Sub-class 2 of corn. (c) Sub-
class 1 of soybeans. (d) Sub-class 2 of soybeans.
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Figure 2.19 Classification Errors versus Acceptance Probability in
Significance Testing with Landsat Thematic Mapper Data (Class
wheat). (a) Sub-class 1 of wheat. (b) Sub-class 2 o! wheat. (c)
Sub-class 3 of wheat. (d) Sub-class 4 of wheat.
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Figure 2.20 Classification Errors versus Acceptance Probability in Signilicance
Testing with Landsat Thematic Mapper Data (Class alfalfa/oats). (a) Sub-
class 1 of alfalfa/oats. (b) Sub-class 2 of alfalfa/oats. (c) Sub-class 3 of
alfalfa/oats. (d) Sub-class 4 of alfalfa/oats.
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The class-averaged classification error criterion in eq. (2.11.a) was applied to

each information class to estimate the optimum acceptance probabilities at the

sub-class level, and the results are shown in Table 2.3. The performances in

information class level were obtained by assessing omission and commission

errors after optimal acceptance probabilities were selected separately for each

sub-class. A Gaussian kernel function was used in density estimation with the

positive reflection technique. Although an optimal window size can be

computed as in (Silverman 86), various window sizes (h=0.1 ~ h=0.6 in steps of

0.1) were examined to observe virtually no differences. The suggested optimal

window sizes (Silverman 86) were in the range of 0.14 ~ 0.27. The results

reported here were obtained with h=0.5.

In order to make a comparison with the estimated optimal acceptance

probability, a specific value which attained the given optimality condition was

manually determined as before. This value is referred as "optimum acceptance

probability determined by scanning" in Table 2.3. As seen in the table, the

estimated values of optimal acceptance probabilities using the proposed

method agreed quite well with those manually selected. The class-averaged

classification errors evaluated for each sub-class with estimated optimum

acceptance probability were also very close to those obtained with the manually

selected acceptance probabilities. The maximum difference between the

estimated and the manually selected acceptance probabilities was only 0.03,

except for the sub-class 4 of "alfalfa/oats" which had a difference of 0.08. The

corresponding difference in the class-averaged classification error in this sub-

class was only 0.34%.

Inspecting Fig. 2.20.(d) reveals that the class-averaged classification error was

not changing much in the region of 0.7 < o_ < 0.9. The resulting class-averaged

classification orrors of the sub-classes with the estimated acceptance

probabilities were all equal or slightly larger than those with manually selected

optimal accepta nce probabilities.

The proposed algorithm was also applied at the information class level as

reported in Table 2.4, and its results were seen to be also very satisfactory since

the acceptance probabilities deviated no more than 0.04 and the corresponding
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maximum difference in the class-averaged classification error was less than

1%.

Table 2.3 Significance Testing of Landsat Thematic Mapper Data with the Class-
Averaged Classification Error Criterion Applied at the Sub-Class Level.

All errors are in percent units

Classes

Corn 1

Corn 2

Corn

Soybeans 1

_S0_beans 2

Soybeans

Wheat 1

Wheat 2

Wheat 3

Wheat 4

Wheat

Alfalfa/Oats 1

Alfalfa/Oats 2

Alfalfa/Oats 3

Alfalfa/Oats 4

Optimum acceptance probability

determined by scanning

t t t • O_t(z EI(O_) E2(O_) EI(O_) E2(

0.96 5.12 7.84 6.48 5.33

0.99 4.33 2.66 3.50 3.19

4.64 2.79 3.72 3.58

0.94 8.73 8.87 8.80 8.77

0.85 17.31 11.54 14.43 13.05

- 12.94 11.17 12.05 11.85

0.97 10.57 22.53 16.55 19.35

0.97 14.77 8.27 11.52 10.36

0.99 10.31 7.24 8.77 7.49

0.99 6.39 2.97 4.68 3.10

Estimated optimum acceptance

probability

_" El(O_") _:2(or,') El(Or,") E2((z" )

0.98 3.55 10.34 6.95 4.09

0.98 5.46 1.86 3.66 2.99

4.71 2.07 3.39 3.19

0.96 7.29 10.50 8.89 8.27

0.87 15.72 13.25 14.49 13.90

- 11.43 12.86 12.14 12.31

0.95 14.16 20.08 17.12 18.50

0.97 14.77 8.27 11.52 10.36

0.96 15.32 4.36 9.84 5.25

0.99 6.39 2.97 4.68 3.10

10.45 5.38 7.92 5.82 12.27 4.65 8.46 5.31

0.80 28.50 25.06 26.78 26.17

0.90 17.28 19.63 18.45 19.50

0.80 40.07 24.93 32.50 25.74

0.79 20.93 20.36 20.65 20.69

0.83 26.42 27.54 26.98 27.18

0.89 18.66 18.73 18.70 18.73

0.81 39.72 25.98 32.85 26.72

0.88 14.92 27.06 20.99 20.13

Alfalfa/Oats - 24.14 21.31 22.72 21.59 - 22.62 21.26 21.94 21.39

0_, t

E1(o ')

E2(o ')

El(Or,")

E2((z*)

:Optimum acceptance probability

: Omission error with the acceptance probability o_"

: Commission error with the acceptance probability (z*

: Class-averaged classification error with the acceptance probability o_"

: Total classification error with the acceptance probability o_"
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Table 2.4 Significance Testing of Landsat Thematic Mapper Data with
the Class-Averaged Classification Error Criterion Applied at
the Information Class Level.

Classes

Corn 1

Corn 2

Corn

Soybeans 1

Soybeans 2

Soybeans

Wheat 1

Wheat 2

Wheat 3

Wheat 4

Wheat

Alfalfa/Oats 1

Alfalfa/Oats 2

Alfalfa/Oats 3

Alfalfa/Oats 4

Alfalfa/Oats

or,*

El(0_")

c2(o_')

El((:z )
t

E2(o_ )

Optimum acceptance probability
determined by scanning

or," EI(_') _,2(_') EI(_')E2(_"

0.99 2.35 13.48 7.92 3.24

0.98 5.46 1.86 3.66 2.99

4.24 2.15 3.19 3.04

0.99 3.95 16.17 10.06 7.69

0.78 22.76 7.79 15.28 11.71

13.18 8.96 11.07 10.58

0.99 6.34 28.05 17.19 22.27

0.99 11.36 11.95 11.66 11.76

0.99 10.31 7.24 8.77 7.49

0.99 6.39 2.97 4.68 3.10

8.48 5.94 7.21 6.16

0.98 11.05 61.21 36.13 44.97

0.77 30.90 11.76 21.33 12.84

0.51 66.55 7.94 37.24 11.10

0.99 1.74 65.21 33.48 28.98

23.40 14.84 19.12 15.68

All errors are in percent units
=F

Estimated optimum acceptance

probability

(z" _:1(0_') {;2((z') EI((Z')E2(O_')

0.99 2.35 13.48 7.92 3.24

0.97 6.38 1.54 3.96 3.06

4.79 1.84 3.32 3.10

0.98 5.18 13.02 9.10 7.58

0.78 22.76 7.79 15.28 11.71

13.80 8.52 11.16 10.55

0.97 10.57 22.53 16.55 19.35

0.99 11.36 11.95 11.66 11.76

0.95 16.16 3.56 9.86 4.59

0.96 12.43 1.62 7.03 2.05

12.38 3.93 8.15 4.67

0.95 15.37 48.14 31.76 37.53

0.75 32.66 10.95 21.81 12.18

0.54 64.81 9.07 36.94 12.08

0.99 1.74 65.21 33.48 28.98

24.97 13.80 19.38 14.90

- Optimum acceptance probability

• Omission error with the acceptance probability o_°

• Commission error with the acceptance probability o_*

• Class-averaged classification error with the acceptance probability o_

• Total classification error with the acceptance probability o_"
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The class-averaged classification errors evaluated for each information class

are compared in Fig. 2.21. Note that, as discussed in previous section, imposing

the class-averaged classification error optimality criterion at the sub-class level

didn't necessarily hold the same optimality at the information class level as

seen in Fig. 2.21 in the corn and alfalfa/oats classes.

25

_- 20

t_
_- 15

_,= 10

0

Figure 2.21

At sub-class level At information class level J

[] Scanned [] Scanned r"l R=_. I
[] Estimated __ []Estimated I'a ......

Corn Soybeans Wheat Alfalfa/Oats

Information Classes

Comparisons of Class-Averaged Classification Errors Evaluated for Each
Information Class.; Optimal acceptance probabilities were selected using
the class-averaged classification error criterion. The first two columns for
each information class show the class-averaged classification errors
based on the optimal acceptance probabilities at the sub-class level. The
next two columns correspond to the case when the optimal acceptance
probabilities are acquired at the information class level. "REL-ML" is the
result obtained with a (relative) maximum likelihood classifier designed
with all 12 sub-classes.

With all 12 sub-classes and their class statistics, a relative maximum likelihood

classifier in the original seven dimensional space was designed and its result

(denoted by "REL-ML") is also included in Fig. 2.21 to show the effect of

dimensionality reduction. In the corn and wheat classes, there seemed to be not

much information loss due to dimensionality reduction. However, there was as

much as 3 ~ 5% of class-averaged classification error increase in soybeans and
alfalfa/oats.

Finally, the total classification error criterion was used with the relative weight A

= 1 and these results are presented in Table 2.5.
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Table2.5 SignificanceTestingol Landsat Thematic Mapper Data with the
Total Classification Error Criterion.

Classes

Corn 1

Corn 2

Optimum acceptance probability

determined by scanning

or,* EI(_* ) F,2(Or,')El(Or,')E2((/'*

0.99 2.35 13.48 7.92 3.24

0.98 5.46 1.86 3.66 2.99

Corn 4.24 2.15 3.19 3.04

Soybeans 1 0.98 5.18 13.02 9.10 7.58

Soybeans 2 0.74 25.63 6.59 16.11 11.57

Soybeans 15.21 7.49 11.35 10.45

Wheat 1

Wheat 2

Wheat 3

Wheat 4

Wheat

Alfalfa/Oats 1

Alfalfa/Oats 2

Alfalfa/Oats 3

Alfalfa/Oats 4

Alfalfa/Oats

o_*

E1(o_*)

_2(o_')

EI(O_" )

E2(_" )

0.76 29.18 10.11 19.65 15.19

0.91 21.21 4.67 12.94 9.99

0.80 28.97 1.14 15.06 3.43

0.86 20.96 0.78 10.87 1.58

- 24.54 1.67 13.11 3.67

0.58 48.88 11.25 30.06 23.43

0.00 100.00 0.00 50.00 5.64

0.07 94.77 0.12 47.45 5.23

0.89 13.57 28.09 20.83 19.80

65.20 1.26 33.23 7.56

All errors are in percent units,

Estimated optimum acceptance

probability

Or.* E:l(Or.') E:2(_*) El(Or,*)E2(o_'),

0.99 2.35 13.48 7.92 3.24

0.97 6.38 1.54 3.96 3.06

4.79 1.84 3.32 3.10

0.96 7.29 10.50 8.89 8.27

0.67 31.40 4.84 18.12 11.78

19.11 5.63 12.37 10.79

0.76 29.18 10.11 19.65 15.19

0.91 21.21 4.67 12.94 9.99

0.74 33.43 0.80 17.11 3.47

0.69 39.08 0.35 19.71 1.88

- 30.68 1.31 16.00 3.87

0.48 57.34 7.61 32.47 23.71

0.00 100.00 0.00 50.00 5.64

0.03 97.91 0.08 48.99 5.36

0.89 13.57 28.09 20.63 19.80

67.86 1.03 34.45 7.62

• Optimum acceptance probability
t

• Omission error with the acceptance probability o_
t

• Commission error with the acceptance probability (z

• Class-averaged classification error with the acceptance probability o_°
t

• Total classification error with the acceptance probability o_
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Notice that applying this error criterion at the sub-class level always attains the

same optimality at the information class level, too. In most of the sub-classes, as

in previous cases, the estimated optimal acceptance probabilities were very

close to those manually selected. In the case of sub-classes 2, and 3 of

alfalfa/oats, optimal acceptance probabilities were found to be very small since

the total classification errors in these sub-classes were rapidly increasing with

respect to acceptance probabilities.

15

_'_ 10

o

Figure 2.22

At information class levelScannedEstimated

Corn Soybeans Wheat Alfalfa/Oats

Information Classes

Comparison of Total Classification Errors Evaluated at the Information
Class Level.; Optimal acceptance probabilities were selected using the
total error criterion.

Total classification errors evaluated for each information class are presented in

Fig. 2.22 which shows a very good matches between total classification errors

obtained with "true" and estimated optimal acceptance probabilities.

For visual comparison of performances, Fig. 2.23 ~ 2.26 show the locations of

the samples identified by the significance testing and the relative maximum

likelihood classifier (REL-ML) which is included to see the effect of

dimensionality reduction of feature vectors.
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Ca) (b) (c) (d)

Ce) Cf) (g) (h)

Figure 2.23 Results for the Class "Corn" Samples. (a) Ground truth location of corn
samples. (b) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at sub-class level. (c)
Significance testing with acceptance probability manually selected under
the class-averaged error criterion at information class level. (d)
Significance testing with acceptance probability manually selected under
the total error criterion. (e) Relative maximum likelihood classifier (REL-
ML)o (f) Significance testing with acceptance probability estimated under
the class-averaged error criterion at sub-class level. (g) Significance
testing with acceptance probability estimated under the class-averaged
error criterion at information class level. (h) Significance testing with
acceptance probability estimated under the total error criterion.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.24 Results for the Class "Soybeans" Samples. (a) Ground truth location of
soybeans samples. (b) Significance testing with acceptance probability
manually selected under the class-averaged error criterion at sub-class
level. (c) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at information class
level. (d) Significance testing with acceptance probability manually
selected under the total error criterion. (e) Relative maximum likelihood
classifier (REL-ML). (f) Significance testing with acceptance probability
estimated under the class-averaged error criterion at sub-class level. (g)
Significance testing with acceptance probability estimated under the
class-averaged error criterion at information class level. (h) Significance
testing with acceptance probability estimated under the total error
criterion.
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(a) (b) (c)

(e)

Figure 2.25

(f) (g) (h)

Results for the Class "Wheat" Samples. (a) Ground truth location of wheat
samples. (b) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at sub-class level. (c)
Significance testing with acceptance probability manually selected under
the class-averaged error criterion at information class level. (d)
Significance testing with acceptance probability manually selected under
the total error criterion. (e) Relative maximum likelihood classifier (REL-
ML). (f) Significance testing with acceptance probability estimated under
the class-averaged error criterion at sub-class level. (g) Significance
testing with acceptance probability estimated under the class-averaged
error criterion at information class level. (h) Significance testing with
acceptance probability estimated under the total error criterion.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.26 Results for the Class "Alfalfa/Oats" Samples. (a) Ground truth location of
alfalfa/oats samples. (b) Significance testing with acceptance probability
manually selected under the class-averaged error criterion at sub-class
level. (c) Significance testing with acceptance probability manually
selected under the class-averaged error criterion at information class
level. (d) Significance testing with acceptance probability manually
selected under the total error criterion. (e) Relative maximum likelihood
classifier (REL-ML). (f) Significance testing with acceptance probability
estimated under the class-averaged error criterion at sub-class level. (g)
Significance testing with acceptance probability estimated under the
class-averaged error criterion at information class level. (h) Significance
testing with acceptance probability estimated under the total error
criterion.

47



2 OptimalSignificance Testing

The significance testing procedure produced reasonably good classification

maps, except for the classes, soybeans and alfalfa/oats, compared to the

relative maximum likelihood classifier, which not only requires a complete list of

classes to be defined and their class statistics computed, but also classifies

samples in the original feature space without dimensionality reduction. The

estimated optimum acceptance probabilities produced classification maps

which were hardly differentiable with those obtained with manually selected

optimum acceptance probabilities.

To see the effect of data reflection on the estimation of acceptance probabilities,

the same experiments with both class-averaged and total classification error

criteria were performed with varying window sizes (h= 0.1 ~ 0.6 in steps of 0.1)

without data reflection. There were observed no differences except of sub-class

3 of alfalfa/oats with h=0.6 where the optimum accept probability without data

reflection was estimated as 0 instead of 0.03 under the total classification error

criterion. Data reflection would change the density estimate values only where

the (xTx) 05 values are less than about 3~4 times the selected window size, h,

due to the exponential term in the Gaussian kernel function. Considering a

(xTx) °5 value corresponding to an acceptance probability o_= 0.5 in the seven

dimensional space is 2.52, which is only comparable to 4 times the largest

window size h=0.6. In most of the sub-classes except for sub-classes 2 and 3 of

alfalfa/oats, the estimated acceptance probabilities would not be affected by

data reflection since the estimated acceptance probabilities were mostly much

larger than 0.5.

2.6 Conclusions

In this chapter, a problem of estimating the optimal acceptance probability in

significance testing was addressed. Estimating the optimal acceptance

probability using a given data set should be very useful in applying a

significance testing procedure. As optimality criteria, both class-averaged

classification error and generalized total classification error criteria were

considered. It is shown that the generalized total classification error criterion

applied to each sub-class also attains the same optimality at the information
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class level. To have an optimal class-averaged classification error criterion at

the information class level, however, the generalized total classification error

criterion with a relative weight should be applied to each sub-class. If the class

of interest doesn't need to be decomposed into sub-classes, the class-averaged

classification error criterion can be applied even without the knowledge of prior

probabilities. A data reflection technique required in mixture density estimation

was observed to be useful when the underestimation of a density function in the

region near 0 in the one-dimensional space of the selected test statistic causes

overestimation of optimal acceptance probabilities. This estimation algorithm for

acceptance probability should be very useful when one doesn't have enough

prior knowledge about the data set to select the proper acceptance probability.

This automatic estimation procedure can replace the lengthy and tedious

process of manual selection of acceptance probability especially when the

given class of interest consists of a large number of sub-classes.
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CHAPTER 3

PARTIALLY SUPERVISED CLASSIFICATION
WITH UNSUPERVISED CLUSTERING

3.1 Introduction

In this chapter, partially supervised classification with only one known class is

formulated as a relative classification problem. Advantages of both reduced

requirements for necessary prior knowledge in an absolute scheme and the

potentially robust and powerful discriminating capability of a relative one are

sought by developing an automatic mechanism for extracting statistical

information corresponding to the "others" class without recourse to prior

knowledge supplied by the data-analyst. Even though the classifiers to be

proposed in this chapter make decisions ultimately on a relative basis, the

terminology "absolute" classifier will be interchangeably used with partially

supervised classifier to emphasize its reduced dependence on prior knowledge.

The class "others" are decomposed into a set of sub-classes so that the density

function of each sub-class can be modeled with a known parametric density

function, for example, with the Gaussian density function. This decomposition is
achieved through a weighted unsupervised clustering procedure which

subsequently develops the unknown class definitions and their corresponding
class statistics through a unsupervised clustering. Once the class statistics of the

constituent components of the "others" class are found, conventional relative

classifier such as a maximum likelihood classifier can be used to identify the
samples belonging to the class of interest.

51 -
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3.2 Partially Supervised Classification with Unsupervised Clustering

The given partially supervised classification problem with only one known class,

which is the only class of interest, can be considered as an L class relative

classification problem with unknown number L. The unknown sub-classes

pertaining to the "others" and their statistical characteristics are developed using

unsupervised clustering. Once the class statistics are developed, any relative

classification scheme can be put to use. This problem is different from that of

general unsupervised clustering in the following senses: (1) One is interested in

finding samples of only one particular cluster (or class) and, one has prior

statistical information, such as the probability density function of that class, or has

a representative set of training samples of that class from which the statistical

properties can be estimated. (2) The clusters corresponding to the class "others"

do not need to be meaningful as useful informational classes and, the confusion

between those clusters are not important as long as they are differentiable from

the class of interest. Under this approach, the mixture density fx(X) is written as a

weighted sum of L probability density functions as,

L

fx(X) = _, _:k fx(X I Ok)
k=l

where, _1 + - +/_L = 1

(3.1)

and _k and fx( • I Ck) are the prior probability and probability density function of the

kth class, respectively, k = 1, ---, L. The notation of C1 and C2, ---, CL means that

C 1 = Gin t and C 2, ---, CL are the sub-classes of Cothers which will be found through

unsupervised clustering. In the given partially supervised classification, only

fx(xlC1) is known.

Any unsupervised clustering procedure (Fukunaga 90) can be used to decide the

number of classes, L and to obtain the initial specification of clusters which can

initiate subsequent supervised clustering. Special care should be taken so that

there is no confusion between Gin t and the clusters corresponding to Cothers. In

other words, the cluster statistics of Cothers should not be biased by the samples

belonging to C 1. One conceivable approach for reducing the bias is to find the

clusters of Cothers by performing clustering with a subset of data in which a

52 -



3 With Unsupervised Clustering

significant portion of the C1 samples are removed through significance testing. In

addition to the difficulty in selecting the proper significance level, however, the

approach still has the bias problem, especially when Cothers is not well separated

from C1. Instead of removing the effect of C1 samples in a rather absolute way, it

is possible to assign to each sample a weight factor which is related to the

relative likelihood of belonging to Cothers and to use it in the unsupervised

clustering.

Let the weight denoted by _il in eq. (3.2.a) indicate the relative likelihood of

sample x i being to Cothers.

w--il = 1 - wil (3.2.a)

fx(Xi I C1)

where, Wil = _1 fx(Xi) (3.2.b)

Note that evaluating the weight factor, _il requires the additional knowledge of _1

(or N 1 since _1 = N1 / N, where N 1 is the total number of samples belonging to the

class of interest.) and the mixture density fx(Xi)'s. Assume for now that the prior _l

(or, N_) is available (the estimation of N_ will be discussed later). Since the

purpose of this unsupervised clustering is to provide an initial specification of

clusters to initiate the clustering process, an exact evaluation of the probability

density ratio in eq. (3.2.b) would not be necessary. A direct estimation of fx(Xi)

through non-parametric density estimation, would require complex computation,

but an approximation can be obtained by noting that Wil can be expressed as a

ratio,

N 1 fx(Xi I C 1)AV

wil = N fx(xi)AV (3.3)

Assume a data point x i is inside a hypersphere with volume AV. Then, Nfx(xi)AV

in eq. (3.3) can be approximated by,

Nfx(xi)AV = Nfx_ Av fx(x)dx (3.4)

The right side of eq. (3.4) is the expected number of data samples found inside

the hypersphere. Therefore, the approximate value for it can be obtained by
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3 With Unsupervised Clustering

counting the number of samples in the hypersphere. In the same way, the

numerator in eq. (3.3) can be approximated by,

NI fx(Xi I C1)AV = Nllx_A v fx(xlC1) dx (3.5.a)

This is the expected number of samples from the class C1, found inside the

volume AV. This can be computed using the known probability density function

fx(xlC1). Instead of discretizing the whole feature space by picking a certain value

of AV and counting the data points inside the hyperspheres, a simple clustering

routine using a Euclidean distance measure is used to find a set of hyperspheres

which can effectively cover the feature space, as in Fig. 3.1.
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Figure 3.1 Computation ot Weights Using Clustering.; Clustering is performed to
find a set of hyperspheres effectively covering the feature space.

With an appropriate clustering condition, unsupervised clustering can be

performed to divide the feature space into a set of small hyperspheres which

cover effectively all given data samples. The critical distance for creating a new

cluster is set up in such a way that each hypersphere corresponds to a cluster,

and inside the hyperspheres, the probability density functions, fx(X) and fx(xlC1)

should not change much. In each hypersphere or cluster, eq. (3.5.a) is computed

as,

N] fx(Xi I Cl)AV -- N1 fx(xoIC1)AV

where, x o E AV

(3.5.b)
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x o is a location inside the given hypersphere. The cluster mean is used for xo

when the probability density fx(oiC1) is evaluated. While the value in eq. (3.5.b) is

an approximation of the expected number of C1 data points inside the given

hypersphere, the count of data points inside the hypersphere is an approximated

value from eq. (3.4). The weight factor is computed using these two values in eq.

(3.2.a) and eq. (3.3) and this same weight value is assigned to all the data points

inside that hypersphere.

With these weight factors, an unsupervised clustering is performed to find the

initial clusters corresponding to Cothers. Since the weight _-i_ in eq. (3.2.a)

indicates the relative likelihood that a data sample is from Cothers , data samples of

C 1 will have very small weights. Any cluster which has most samples with

negligible weight factors should be deleted since the samples in it are mainly

from C 1. Therefore, the unsupervised clustering with these weights can avoid the

potential influence of the data points belonging to C1 upon new clusters of Cothers.

For each cluster k corresponding to Cothers, (that is, k = 2, ---, L), the effective

number of elements in the cluster, N k is computed as a sum of the weights of

data samples in the kth cluster as,

Nk= _ wil (3.6.a)
i_ Ik

where Ik is the index set of the kth cluster (i.e., if i _ Ik, then xi _ Ck). This effective

number will indicate the possibility of being part of Cothers. Any cluster with a

negligible effective number of members is deleted.

Nk

Rk = Number of samples in cluster O k (3.6.b)

The ratio of the effective number to the actual sample number assigned to the

cluster in eq. (3.6.b) is also checked, and any cluster with a small value of this

ratio is deleted since most samples in the cluster have negligible weight factors.

When the number of class-of-interest samples, N 1 is under-estimated, this ratio

checking is very important since there are extraneous clusters generated in the

region where most of the class-of-interest samples are located. This ratio

checking should also be effective when the class-of-interest samples are

distributed slightly differently from the known distribution function in some
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3 With Unsupervised Clustering

hyperspheres so that the numbers computed with eq. (3.5.b) deviate from those

statistically expected. Without the ratio-checking, smaller values of eq. (3.5.b) in

some hyperspheres than they should be would allow generating clusters of

Cothers which would take a significant portion of class-of-interest samples.

The effective cluster mean Mk is computed as,

1 _ wn xi
Mk= I_k i_ Ik

(3.6.c)

Note that the influence of data point xi on the cluster means of Cothers is

accordingly weighted by _-i1. If second order statistics are necessary for

clustering, then, the effective cluster covariance can also be computed with

weights in a similar fashion. A few iterations of this unsupervised clustering with

weights will suffice to provide a list of clusters corresponding to Cothers and their

initial specifications for the subsequent supervised clustering process.

Once the number of clusters and the specifications of the clusters are obtained

through unsupervised clustering with weights, then a supervised clustering

procedure can be started to develop the unknown class statistics. The class

statistics developed are used in the relative classification scheme chosen. In

certain cases, especially in analyzing high dimensional feature vectors, second

order statistics, which are usually characterized by interband correlation

structures, provide very crucial information to use in classification or clustering. In

this case, a conventional clustering procedure such as the ISODATA (Hall and

Ball 65) algorithm is not likely to perform well in developing class statistics since

the algorithm does not account for interband correlation in the data set. Thus, a

clustering based on the EM algorithm (Titterington et al. 85, Redner and Walker

84, Dempster et al. 77) can be used. That is, in the mth iteration of clustering,

weight factors, wik[_(m)], for i = 1,---, N and k = 1, ---, L, are computed as,

(Expectation - step),

_(km) _ (m),Ix {,xil Ck)
Wik[_(rn)] = L

E _m)_(m)(×i If j)

j=l

(3.7)
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where fx(m)(xi I C1)= fx(xil C1) for all m, and _ is the set of parameters of the

unknown probability density functions. For example, if the unknown probability

density functions are Gaussian, then _- [_2, ---, _L, M2, ", ME, Y'2, ---, "_'L ]. With

the weight in eq. (3.7), a new maximum likelihood estimate of _, (i.e., _(m+l) ) is

obtained (__Maximization - step). These two steps are iteratively performed until

convergence. Each iteration of these two steps is known to increase the joint

likelihood of data samples (Titterington et al. 85, Redner and Walker 84,

Dempster et aL 77). After convergence, the estimates of _ specify the probability

density functions of the clusters which can be used in the subsequent relative

classification.

In summary, a flowchart of the proposed classifier based on clustering is shown

in Fig. 3.2.

START I
I

Estimate N 1 I

Compute weight for

each data point
]

Find initial clusters using
unsupervised clustering

with weights
i

Develop class statistics
and perform relative

classification
r

END I

Figure 3.2 Flowchart of a Partially Supervised Classification with
Unsupervised Clustering.

3.3 Estimating the Number of Class-of-Interest Samples

In order to have the initial cluster definition in the previous section, it is required

to know N 1, the number of samples belonging to the class of interest. Due to the
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3 With Unsupervised Clustering

limited prior knowledge and approximation involved in the estimation process,

typically, an accurate estimation of this is another difficult task. Therefore, it will

be very desirable to design a partially supervised classification algorithm which is

not critically dependent on the estimate of this unknown. The objective of this

section is to obtain a simple and reasonable estimate of N1 which can produce a

meaningful initial cluster definition, rather than developing a very rigorous

estimation algorithm.

The unknown number N 1 will be estimated by "matching" two functions. Note that

the probability density function fx(xlC1) can be estimated in two different ways. It

is typically estimated from the training samples supplied by user. But it can be

also computed using the mixture density estimate fx(X) if the probability density

function of Cothers, fx(XlCothers) and _1 are available. Note that the mixture density

fx(X) in eq. (3.1) can be written as,

fx(x) = _1 fx(xlC1) + (1-_1)fx(xlCothers)
L

where, (1-_1) fx(xlCothers)= _ =k fx( x I Ck)
k=2

(3.8.a)

In a specific region where the second term in eq. (3.8.a) is negligible compared to

the first term, the estimate of fx(xIC1) can be evaluated from the estimate fx(X) if a

specific value is assumed for _1. It will be a function of _1. These two estimates

can be matched together to find the best =1. The function to be matched needs

not be necessarily fx(xlC1) even though it is a natural choice in the given partially

supervised classification problem where prior information, other than the class

statistics of C1, is non-existent. Any function derivable from it can be matched.

To be general, denote the function to be matched as h(x). This function is

selected in such a way that it can be both evaluated from the probability density

function of C1 and estimated using the given data set if the prior probability of C1

is available. Therefore, the estimate of h(x) should be computable using the

unlabeled samples when a certain value is assumed for the unknown prior

probability. The estimate, based on a specific value of _1, is denoted as h(xl_l). It

is compared with the function h(x) evaluated using fx(xlC1), which is estimated

from the training samples, to find the unknown prior probability which causes

h(Xl_l) to be nearest to h(x). This matching doesn't necessarily need to take
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3 WithUnsupervisedClusterin,q

place in the original feature space. It can be accomplished in any space derived
from the original space. The measure of closeness of h(x) and h(xl=l) should be

defined according to the specific function h(x) chosen. In this paper, fx(xlC1) is

selected as h(x). Over the sub-space in which the unknown quantity, (1-
E1)fx(XlCothers) in eq. (3.8.a), is negligible compared to =_fx(xlC1), the estimate

h(xl=l) is approximated as,

fx(X)
h(x I =1) - (3.8.b)

As for the measure of closeness, the expected squared error may be used, with a

weight function w(x) included to account for the possibility of different weights for

different x's.

Error(_l) = Ex {[h(x I=1)-h(x)]2w(x)} (3.8.c)

The expectation of the weighted squared error is taken over the entire feature

space, or over the selected subspace as required. With the approximation of eq.

(3.8.b), the expectation is computed only over the region where eq. (3.8.b)

remains valid. Equation (3.8.c) can be equivalently written as a function of N 1

explicitly as follows.

Error(N1) = Ex {EN,x(Xl-NlfxlxlC,)]=w/x)} (3.8.d)

This is a matching process of weighted probability density functions, Nfx(X ) and

Nlfx(xlC1). In the case of the multivariate Gaussian distribution of fx(xlC1), it is

possible to know the region where most of the samples are located. Note that this

matching process can be also performed in the one dimensional y space where y

= xTx. If the dimensionality is not high, it is possible to select an appropriate Yo

and corresponding region specified by xTx < Yo where most of C1 samples are

found. Therefore, with a suitable va!ue of Yo, the matching of eq. (3.8.d) can be

processed.
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Figure 3.3

l _ Nfy(y)

YO Y = xTx

Matching of Two Weighted Probability Density Functions.; Nfy(y) is
matched with NIIy(yIC 1) over the region 0 < y <_Yo, Y = xTx to find the

best NI. Iv(y) is the probability density function of y's. fv(YIC_) is the
density function in y space corresponding to C1 samples. Yo is a user-

specified threshold.

An illustration in the y space is shown in Fig. 3.3 where the density function

fx(xIC1) is assumed to be the standard multivariate Gaussian.

The matching is performed in the region 0 < y < Yo where Yo is a user-specified

value indicating the region where the approximation of eq. (3.8.b) holds.

The unknown number Nt is determined to minimize the expected error between

h(x) and h(xl_l) as,

^ f [w(x),x(X),x(xlc,)],x(Xl,X
NI= N

j" [w(x)fx(xlCl)2]fx(x)dx
(3.9)

The integration is performed over the selected region. In computing eq. (3.9), the

expectation is replaced by the ensemble average over the x's in the given region.

Note that due to taking expectation, the squared error between Nfx(X) and

Nlfx(xlC1) in eq. (3.8.d) is in fact weighted according to the density function of

fx(X). If the least square error is desired, this weight can be canceled out by using

the weight funct;on w(x) = 1/fx(X). This matching process can also be applied at

the level of the cumulative distribution function and this can be achieved with the

error function in eq. (3.8.d) by employing the following weight function which

further cancels out the effect of fx(xlC1).
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3 With Unsupervised Clustering

1

w(x) = fx(xlC 1)fx(x)

Then, the estimated value N1 is computed as,

j" Nfx(X dx

N1 = f fx(xlC1)dx (3.10.a)

The numerator in eq. (3.10.a) is the expected number of samples found in the

selected region. Since the samples of C1 are assumed to dominate in their

numbers over the samples from the "others" class in the given region, the

numerator in eq. (3.10.a) will be the approximated number of samples from C1.

Suppose the integrated value of the denominator is o_,

o_= j'fx(xlC1) dx (3.10.b)

which is the probability of class C 1 for the given region. By performing the

significance testing with the acceptance probability o_, the estimate of N 1 in eq.

(3.10.a) can be easily obtained by counting the number of samples accepted and

dividing by the selected acceptance probability _. The estimate in eq. (3.10.a) will

be in most cases an over-estimated value, since there should be samples not

belonging to class C 1 in the count of the numerator in eq. (3.10.a). This over-

estimation will be significant, especially when there is insufficient separability

between the class of interest and the class of "others." In developing the initial

clusters specification, experimental results show that this over-estimation is not

critical to the performance, but an under-estimated value could be problematic

since it results in non-trivial _1 values and causes clusters generated in the

region where most of the class-of-interest samples are located. These

extraneous clusters would take a significant portions of class C 1 samples away.

In the experiment, eq. (3.10.a) is tlsed in the one dimensional y space where y =

xTx due to its simplicity. Note that this matching can be computationally

burdensome unless the matching is processed in a lower dimensional space,

such as the one-dimensional y space.
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For those cases when the region for the matching process cannot be easily

selected, a slightly different algorithm is developed. Note that, using the weight

Wil'S in eq. (3.2.b), the probability density function fx(xlC1) can be estimated from

the unlabeled samples with weights. For example, under the Gaussian

assumption of fx(xlC1), the mean and covariance matrix of it (denoted as M(_I)

and _(_1), respectively) can be estimated as,

1 N

M(_I) = Wll _L, Wil Xi (3.11.a)
i..1

N

1 _, Wil (xi_ M)(xi_ M)T (3.11.b)
_(/'1;1) = Wll i-1

where W_ is the sum of weights Wil'S and is computed as,

N

W 1 = _ Wil
i,.1

and the function h(x I =1) is the Gaussian density function with mean and

covariance matrix, M(= 1) and T_,(_I). h(x I =1) will be compared with the function

h(x) while varying =_. This is a recursive process since the best value of the prior

_:1 is found by checking the value _1 with which the estimated h(x I _1) is most

similar to h(x). Note that this is based on the assumption that the nearer to the

true value the unknown _1 is, the more h(x I =1) match well with h(x).

For comparison of the two functions, any statistical separability measure, such as

the divergence, the Jeffries-Matusita (JM) distance, or the transformed

divergence (Swain 78) can be used to quantify the similarity. This procedure

doesn't require specifying the region over which the matching should take place.

Note that, at least in principle, this procedure is not limited to the parametric

case, although the computation required in estimating recursively h(x I _1) and

evaluating the similarity measure in a non-parametric case may be formidable. In

computing the weights Wil'S, the simple procedure in eq. (3.3) in previous section

can be used.
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3.4 Experiments and Discussion

To test the performance of the partially supervised classification algorithm
proposed in this chapter, experiments were carried out with both simulated and

real data. The partially supervised classification algorithm should be effective

even when the class of interest is not well separated from the others. To test the

proposed algorithm over a wide range of separability, several bivariate Gaussian

data sets were generated with different degrees of separability as in the previous

chapter. In the case of real data, the July LANDSAT Thematic Mapper (TM) data

introduced in previous Chapter were used. For comparison, the (relative)

maximum likelihood classifier (denoted as "REL-ML") was designed with the
known class statistics, and the classification error was used for evaluation.

3.4.1 Experiments and Discussion

For a test with simulated data, as in previous chapter, bivariate (q = 2) Gaussian
data were generated. 1000 samples were generated for the class of interest, Cint

with zero mean and an identity covariance matrix. The class "others," Cothers , was

assumed to be Gaussian with mean [d,0] T , d > 0, and an identity covariance

matrix. 2000 samples were generated for Cothers.

To avoid any random error due to the data generation process and its effect on

evaluating experimental results, data sets were generated 50 times with different

seed numbers and the averaged result used in comparison.

Equation (3.10.a) was used to obtain the N 1 estimate with varying acceptance

probability, o_, in eq. (3.10.b) as in Fig. 3.4. The estimated values were not much

different for different o_'s. As expected, unless the separability between the two

classes is sufficient, there was significant over-estimation.
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Figure 3.4
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Estimated Number of Class-of-Interest Samples with Different Values
of Acceptance Probability et'sUsing eq. (3.10.a, b).

Using the N 1 estimate, the weights _il's were computed and used in

unsupervised clustering to develop clusters corresponding to the "others" class.

Any cluster which had a negligible effective number from eq. (3.6.a), or a

negligible ratio from eq. (3.6.b) was deleted. Without the ratio checking, due to

non-trivial weights _l's in the regions where the weights should be negligible, an

under-estimated value of N1 would result in extraneous clusters and cause large

omission error. For those clusters, the effective numbers of samples in eq. (3.6.a)

would be much smaller than the actual sample numbers grouped to those

clusters since significant portions of the samples in those clusters are from the

class of interest. Those extraneous clusters can also be observed even though

N1 is not much under-estimated in such cases when the actual distribution of the

class-of-interest samples is slightly different from that predicted by the probability

density function fx(xlC1).

Figure 3.5 shows the class-averaged classification error comparisons of the

relative maximum likelihood classifier (denoted as "REL-ML"), a partially

supervised classifier based on significance testing (denoted as "ABS-SIG") and

the proposed classifier based on unsupervised clustering with three different

acceptance probability oCs for the N 1 estimation (denoted with three different a

values).
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The class-averaged classification error is a simple average of the omission and

commission errors. The result of the significance testing is obtained by scanning

the significance level in the interval [0.01, 0.99] in steps of 0.01, choosing the

best one. Therefore, this is the best one attainable with significance testing.

While significance testing had about 5 ~ 10% greater error than the relative

maximum likelihood classifier unless the distance d between two class means

was sufficiently large, the proposed algorithm closely followed the performance of

the maximum likelihood classifier. Only when the overlap between two classes is

significant (see the case d < 2, for example) and the N 1 value is severely over-

estimated, was there as much as 5% error increase compared to the maximum

likelihood classifier.
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Figure 3.5 Class-Averaged Classification Error Comparison.; The proposed
classifier based on unsupervised clustering is denoted by the c¢value of
eq. (3.10.b) used in estimating the number of class-of-interest samples.
"REL-ML" is the relative maximum likelihood classifier with known class
statistics, and "ABS-SIG" is the best result for significance testing
attainable with significance levels in the interval [0.01,0.99].

To see the sensitivity of the proposed classification algorithm to the N1 estimate

and its amount of under- or over-estimation, several different values of N 1 were

used in computing the weights _il'S in the clustering without estimating it. The

classification result is shown in Fig. 3.6.
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Figure 3.6 Sensitivity on the Estimate N 1 o! the Proposed Classifier.; Several

ditterent values of N1 were used in computing the weights _i]'s in the

clustering without estimating.

There was almost negligible difference in class-averaged classification error

when N 1 was varied from 750 to 1500 (not shown). When an over-estimated N1

was used, there was as much as 2% (N a = 2000, 100% over-estimation) or 5%

(N 1 = 3000, 200% over-estimation) error increase compared to the maximum

likelihood classifier when d < 2. An over-estimated value of N 1 increases the

commission error and its effect becomes more noticeable as the overlap between

two classes increases. Although the proposed algorithm was very tolerable of the

degree of over-estimation, it was less so with under-estimation as shown for the

case N 1 = 500 (50% under-estimation) in Fig. 3.6. When d > 2.5, the class-

averaged classification error increased since the clusters containing a non-trivial

portion of the class-of-interest samples survived the cluster deletion test of eq.

(3.6.a,b) and many class-of-interest samples were deleted to increase omission

error. Note that, as shown in Fig. 3.4, the N 1 estimate with eq. (3.10.a,b) is in

general slightly over-estimated due to the commission of "others" samples in the

numerator of eq. (3.10.a). Therefore the under-estimation is not so problematic

unless the training samples of the class of interest are not representative enough

to adequately model its distribution function.
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3.4.2 Experiment with Thematic Mapper data

For a test with real data, the July LANDSAT Thematic Mapper(TM) data which

was also used in the previous chapter was used. For a description of training and

test samples, refer to Table 2.2.

For comparison of classification performance, a maximum likelihood classifier

was designed with all 12 sub-classes and the classification errors were

evaluated. The performance of the classifier was assessed in terms of class-

averaged classification error, total classification error and a simple average of

these two. As discussed in the previous chapter, note that while the class-

averaged classification error is a simple average of the omission and commission

errors, the total classification error is a weighted average of those two errors

according to the prior probabilities of the class of interest and the others.

Classification was also performed with significance testing and the proposed

algorithm based on unsupervised clustering. Since there are more than one sub-

class for each information class, the whole data set was first divided using a

maximum likelihood classifier into n sub-groups where n is the number of sub-

classes of a given information class. For each sub-group, the proposed classifier

was applied to identify the samples belonging to the corresponding sub-class.

Figure 3.7 shows the classification error comparison of significance testing and

the proposed partially supervised classifier based on unsupervised clustering. As

before, various values were tried to find the best significance level for each sub-

class. When estimating N 1 in the proposed classifier, five different values of a

(0.1,0.2, 0.3, 0.4 and 0.5) were used and the estimated numbers N 1 were mostly

over-estimated. Since less than 1% of the differences are observed in the

classification error even though there were large differences in the degree of

over-estimation (21% ~ 177%), only the result with (:z = 0.9 is shown in Fig. 3.7.

The proposed algorithm is seen to perform better in all classes by about 1 ~ 6%

than the best significance testing case where the significance levels were

deliberately chosen manually.
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Classification Error Comparison of Significance Testing (ABS-SIG) and
the Proposed Classifier Based on Unsupervised Clustering (ABS-
UNSUP).; N 1 was estimated with _=0.9. The comparison is made with
class-averaged classification error (denoted as "ERR1"), total
classification error (denoted as, "ERR2") and the simple average of
those two (denoted as "AVG").
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Classification Error Comparison of the Proposed Classifier (ABS-
UNSUP) with the Relative Maximum Likelihood Classifier (REL-ML).;
The comparison is made with the class-averaged classification error
(denoted as "ERR1"), the total classification error (denoted as, "ERR2")
and the simple average of those two (denoted as "AVG").
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In Fig. 3.8, the classification error comparison is made with the relative maximum

likelihood classifier. Except for the class, "alfalfa/oats", there was only 1 ~ 2%

difference in classification error compared to the relative maximum likelihood

classifier. As for the class "alfalfa/oats", there was about 7% increase in

commission error compared to the maximum likelihood classifier.

Figures 3.9 to 3.12 show the locations of the samples identified by the proposed

partially supervised classifiers and the relative maximum likelihood classifier.

(a) (b) (c) (d)

Figure 3.9 Results For the Class "Corn" Samples. (a) Ground truth location of
corn samples. (b) Result for the relative maximum likelihood
classifier (REL-ML). (c) Result for the best significance testing (ABS-
SIG). (d) Result for the unsupervised clustering based proposed
classification (ABS-UNSUP).

(a) (b) (d)(c)

Figure 3.10 Results for the Class "Soybeans" Samples. (a) Ground truth location
of soybean samples. (b) Result for the relative maximum likelihood
classifier (REL-ML). (c) Result for the best significance testing (ABS-
SIG). (d) Result for the unsupervised clustering based proposed
classifier (ABS-UNSUP).
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(a)

Figure 3.11

Cb) (c) (d)

Results tor the Class "Wheat" Samples. (a) Ground truth location of
wheat samples. (b) Result for the relative maximum likelihood classifier
(REL-ML). (c) Result tor the best significance testing (ABS-SlG). (d)
Result for the unsupervised clustering based proposed classifier (ABS-
UNSUP).

(a) (b) (c) (d)

Figure 3.12 Results for the Class "Alfalfa/Oats" Samples. (a) Ground truth location
of alfalfa/oat samples. (b) Result for the relative maximum likelihood
classifier (REL-ML). (c) Result for the best significance testing (ABS-
SIG). (d) Result for the unsupervised clustering based proposed
classifier (ABS-UNSUP).

Compared to the relative maximum likelihood classifier, which requires a

complete list of classes to be defined and their class statistics computed, the

proposed classification algorithm was very successful in its classification

performance even though prior knowledge was provided only for the specific

information class under consideration. The computational complexity was

increased over the relative maximum likelihood classifier, but not prohibitively so

in view of the time savings for the manual portion of the analysis task. In the
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experiment with Thematic Mapper data in identifying one information class, it

took on average about 3 times more computational time than the maximum

likelihood classifier.

3.5 Summary

In this chapter, we have proposed a partially supervised classification algorithm

based on unsupervised clustering. Initiated with only prior knowledge pertaining

to a particular class to be identified, the proposed classifier develops class

statistics of "others" class through a weighted unsupervised clustering procedure.

The user only needs to provide the information for a particular class one actually

wants to identify.

Experiments with both simulated and real Thematic Mapper data showed very

satisfactory classification performance compared to the standard relative

maximum likelihood classifier. The proposed classification algorithm is also

computationally moderated compared to the maximum likelihood classifier. The

operational simplicity should make this algorithm useful in many practical

applications.

3.6 Conclusions of the Partially Supervised classification and Suggestions for
Future Research

In Chapter 2 and 3, the problem of partially supervised classification especially

when the class definition and corresponding class statistics are available a priori

only for a particular class of interest. This problem can be frequently encountered

in many real application of pattern classification techniques. Two approaches,

one being based on significance testing, which belongs to the absolute

classification scheme, and the other being based on the unsupervised clustering,

belonging to the relative classification scheme, were proposed.

The experiments both with simulated and real LANDSAT Thematic Mapper data

showed very satisfactory results compared to the maximum likelihood classifier

which was designed with complete prior knowledge.
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The optimal acceptance probabilities estimated without supervision for

significance testing matched very well with the manually selected optimal values.

Significance testing inherently has a limitation in its classification performance
due to the dimensional reduction of the feature space. This effect was noticeable

in the experiments. However, the second approach based on unsupervised

clustering doesn't have this limitation since it performs classification in the original

feature space without dimensionality reduction. But this requires the knowledge
of a number of class-of-interest samples in the given data set. The simple

procedure based on thresholding and counting numbers of samples accepted
with the given thresholding was found to be satisfactory for initiating the

unsupervised clustering to find the clusters corresponding to the unknown class

of "others."

However, there are needs for deciding a priori various parameter values which

control the clustering procedure. For the proposed algorithm based on clustering

to be fully and easily usable by users with little prior knowledge about the data

set, there must be a dependable algorithm which can suggest at least a proper

range of parameter values for clustering. These parameter values are expected

to be also dependent on the particular clustering algorithm selected. In fact, this

is very closely related to the general clustering problem.

In designing a partially supervised classifier, the quality of training samples is of

utmost importance. To properly design the classifier, the training samples must

be representative of the same class samples in the given data set to be

classified. To fulfill this requirement in the previous experiments, random

sampling was carried out to sample about 10% of data from the data set to use

as training samples and the resultant randomly selected training samples were

found to be satisfactorily representative. However, in a practical application of the

classifier, the limited training samples won't be always very representative all the

time. In a conventional totally supervised relative classification, there is

somewhat of a wide tolerance for the representativity requirement, due to its

relative consideration in decision making, but, in the partially supervised

classification case, there is expected to be less tolerance. Therefore, developing

a robust partially supervised classifier will be very important.
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APPENDIX A

Fast Parzen Density Estimate Using Clustering-Based Branch and Bound

A.1 Introduction

Applying statistical pattern recognition techniques often requires the probability

density functions of given data samples. If the distribution of the given data can

be assumed to follow a certain known parametric form, such as a Gaussian

distribution, then, the parameters specifying the density function can be

estimated. However, it is not always possible to assume a certain parametric

distribution function for the given data set without causing significant error. In this

case, a non-parametric approach can be taken by employing a density estimation

technique [A.1]. Since the process of density estimation usually takes substantial

computation, it might not be feasible to adopt this non-parametric approach,

especially in an on-line application. There has been research on reducing the

computational requirement of the density estimation based on k nearest neighbor

[A.2,3] by saving the number of evaluations of quadratic terms which are required

to find the k nearest neighbors. As for the Parzen density estimate, there has

also been research on selecting a representative subset of the given training data

set [A.4]. The reduced subset of training samples are selected in such a way that

the Parzen density estimate with the reduced set matches as closely as possible

with that with full data set in the sense of the entropy measure of similarity

between two estimates. If the Parzen density estimate is to be evaluated on a

regular grids, for example, in plotting the density function or drawing a contour

diagram, the fast Fourier transform (FFT) can be used by noting that the Parzen

density estimate is the convolution of the data with the kernel function [A.5]. In

the general case of evaluating at irregular points, this algorithm is not applicable.

In this appendix, similarly to the efficient density estimate based on k nearest

neighbor [A.2,3], the branch-and-bound procedure is applied in Parzen density

estimation to reduce the number of evaluations of quadratic terms. Noting that

the contribution of a training (or design) sample on the evaluated density

estimate rapidly diminishes if it is far away from the location of evaluation,

therefore, without causing much error, some of the training samples could be left

out in evaluating the kernel functions if the distances from the location of
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evaluation to those samples exceed a certain critical distance. The computation

required for checking the distances can be significantly reduced by utilizing the

branch-and-bound procedure. Experimental results are presented to show the

effectiveness of the proposed approach in reducing the computational load on

the Parzen density estimation. Notice that, to further reduce the computational

burden, this proposed algorithm also can be used in addition to the data

reduction algorithm in [A.4].

A.2 Fast Parzen Density Estimation

Suppose there is a training data set, Y with N elements from which the unknown

density function should be estimated. The dimensionality of the data is denoted

by q (q >- 1). The q-dimensional feature space is indicated by Rq. The Parzen

density estimate fx(x) of the unknown probability density function at x, x c Rq, is

obtained as a sum of kernel functions placed at each sample y in Y as,

fx(x) = N'h q Z K
yeY

(A.1 .a)

where K(o) is the selected kernel function and h is the smoothing parameter (or,

window size). The kernel function satisfies the following condition,

L_ Rq K(x) dx = 1 (A.l.b)

Since the estimated density fx(x) will inherit all the properties of the selected

kernel function, the kernel function is often chosen in such a way that it has

mathematically tractable properties such as continuity or differentiability. Some

examples include the Gaussian kernel function, Epanechnikov kernel function, or

the rectangular kernel function [A.1]. The value of the kernel function rapidly

decreases as the distance from the origin increases. Therefore, the contribution

of a sample in ¥ to the estimated probability density at a certain x will become

negligible if the distance between x and the sample in Y becomes large. Without

introducing significant error, in many situations, it is possible to select a "critical

distance", D c and to assume the contribution of a sample y in Y is negligible if the
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distance to x is more than this critical distance. In estimating a density, a

truncated and rescaled version of the original kernel function is used to satisfy

the condition in eq. (A.l.b). Suppose the truncation level is denoted by 13, then,

the critical distance D c with window size h=l, is computed as,

K(x) dx , 0 < 13 -< 1 (A.2.a)

The critical distance with window size h is then obtained by multiplying h with the

D o calculated in eq. (A.2.a). The truncated kernel function with truncation level 13

is denoted by K'(x; 13)and given as,

K'(x;13)= K(x) xTx < D2
13

= 0 otherwise

(A.2.b)

Depending on the specific application and the degree of permissible trade-off

between accuracy and speed, an appropriate value of 13 in eq. (A.2.a) can be

selected. Some kernel functions such as the Epanechnikov kernel function or the

rectangular kernel function have compact support in the given feature space only

on which the function has non zero values. In these cases, it is straightforward to

select the value D c without losing any accuracy, and there is no need for

truncation and normalization.

Denote the distance between two samples, x and y as L(x, y). If the Euclidean

distance measure is used, then, L(x, y) is computed as,

L(x, y) = N/ (x-y)T(x-y) (A.3.a)

If different smoothing parameters are to be allowed for different coordinate

directions, then, a slightly modified measure of distance can be used with the

kernel covariance matrix T_,,

L(x, y) = _/(x-y) T y_,-1 (x-y) (A.3.b)
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Note that the distance measure in eq. (A.3.b) is equivalent to the Euclidean

distance measure in eq. (A.3.a) after pre-whitening [A.6] with the appropriate T_,.

Pre-whitening is assumed to be already performed, if required, to the data Y and

x's to deal with the need of different smoothing parameters, and in the

subsequent discussion, the Euclidean distance measure will be used.

Suppose the Parzen density estimate is evaluated at x. Notice that a sample y in

Y which doesn't satisfy,

L(x, y) < D c (A.4)

can be excluded from the computation in eq. (A.1). The number of checking

distances in eq. (A.4) can be significantly reduced by using the critical distance

Dc and applying the branch and bound algorithm [A.3] with clustering.

Suppose clustering is performed to group the samples in Y into clusters. To each

cluster, for example, to the jth cluster Cj, three variables, {Ij, Mj, Dmax(J) } are

associated. Mj is the cluster mean and Ij is the index set of cluster Cj defined as,

Ij - {i [ ith sample Yi belongs to cluster Cj, Yi _ Y }

max {L(xi,Dmax(J)-- i EIj Mj)}

Dmax(J) denotes the maximum distance from the cluster mean, Mj to the samples

in cluster Cj. Notice that the distance from x to any sample in Cj should be larger

than L(x, Mj) - Dmax(J). Therefore all the samples belonging to the cluster Cj which

don't satisfy the inequality in eq. (A.5) can be excluded in evaluating the density

estimate at x as shown in Figure A.I.

L(x, Mj) - Dmax(J) < Dc (A.5)

Therefore, the calculation of distances from x to each sample in Y can be

significantly recluced by checking this inequality and deleting clusters

appropriately. Note that this same idea can be also applied to reduce the number

of clusters which need be checked with this inequality by creating a hierarchical

grouping of the clusters, but we will not elaborate here.
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L(x,Mj )- Dmax(J)

Dmax(j)

C1

Figure A.1 Efficient Computation of Parzen Density Estimate Using
Clustering.;Samplesgroupedintoclustersotherthan C2 and
C3 in this figure need not be consideredin the computation
of Parzendensityestimate.

The computation required for the clustering may be not trivial, but it is required

only once for each training data set. If the number of locations for which the

probability density should be computed is large, then this one-time extra

computation for clustering should be worthwhile. When the probability density is

actually evaluated, there exists another extra computation required for the

distances from given location x to each cluster center. Considering the savings

due to skipping a subset of distant training samples, this will be quite negligible

unless the number of clusters is comparable to the number of total training

samples.

In unsupervised c}ustering, a new cluster is generated if the minimum distance to

the existing clusters exceeds the pre-specified distance (let us denote this by

Tcreate). TO achieve a maximal efficiency in reducing computational load, care

must be exercised in selecting a proper value of Tcreate. Too small a value of

Tcreate will result in a large number of small clusters into which very small

numbers of samples are grouped. In this case, the overhead of clustering and

checking the inequality in eq. (A.5) will surpass the savings obtained by skipping

the samples grouped in distant clusters. On the other hand, a small number of

large clusters due to too large a value of Tcreate might not be able to eliminate any
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clusters in evaluating the density estimate. The value of Tcroato should be related

to the critical distance Dc.

A.3 Experiments and Discussion

To verify the effectiveness of the fast Parzen density estimation algorithm

proposed, an experiment with simulated data was performed. For a training data

set, 1000 samples of bivariate (q = 2) normal data were generated. The mean

and covariance matrix were set to [0, 0] T and the identity matrix, respectively.

The density estimate was evaluated at four different groups of locations. That is,

four sets of bivariate Gaussian samples, each containing 100 samples, were

generated with means at [+1.5, 0] T and [0, +1.5] T. The covariance matrices were

all set to the identify matrix.

To see the effect on the efficiency of this algorithm, the parameter for new cluster

generation, Tcreate, was selected as,

Tcreate = a Dc (A.6)

and the value a was varied to see its effect on the effectiveness of the proposed

algorithm. (In clustering, if the squared distance to the nearest cluster is more

than q T2reate, then a new cluster is generated. Therefore, the maximum distance

Dmax(- ) in eq. (A.5) is "_ Tcreate). The effectiveness of this algorithm was

measured in terms of percent of the number of distance computations actually

evaluated in density estimation.

average number of quadratic distance computation
R = 100 x number of training samples

(A.7)

In the numerator in eq. (A.7), the number of distance computations to the cluster

centers is also included even though it might be negligible in most cases. The

averaging is carried out for the test samples. In the case of conventional Parzen

density estimation, the percent ratio R in eq. (A.7) is 100. If the overhead of

computing distances to the cluster centers surpasses the savings acquired by

deleting some of the distant clusters, the ratio R can be greater than 100.
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First, the Epanechnikov kernel function was used since it is straightforward to

choose the critical distance Dc, which is equal to the window size h. As

suggested in (p.86 in [A.1]), the window size h was set to 0.56 in the case of this

Epanechnikov kernel function. Under this setting, only 4.24% of the training

samples on the average actually contributed in the density estimation• The value

e¢ in eq• (A.6) was varied from 0.01 to 8 to see the effect of the numbers of

clusters on deleting some of the distant clusters. Only one iteration of clustering

was performed since a crude grouping of the samples is sufficient• As ¢z in eq.

(A•6) decreases (in other words, as the number of clusters increases), the

savings in distance computation increases up to a certain point, and after which

the overhead of distance computation to the cluster centers overwhelms the

savings attained by skipping some of the training samples as seen in Fig• A.2•

140

._ ._ 120

N_ 8o

40

Figure A.2

o

= • • • .....

2 3 4 5 6 7 8

(_

R, Average Number of Distance Computations in eq. (A.7) Expressed
as a Percent.; The Epanechnikov kernel function was used with
different cluster creation conditions as in eq. (A.6) where e¢was varied
from 0.01 to 8.; window size h = 0.56, and critical distance Dc = 0.56.

Unless (z is extremely small (unless ot < 0.02 in this experiment), the overhead

was negligible. About 80% of the savings was observed in distance computation

with the value ot in 0.5 ~ 1.0.

The same experiment was performed with the Gaussian kernel function, which

has non-zero values in the entire feature space. The truncation was performed
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with truncation level I_ as in eq. (A.2. a & b). The window size was set to h=0.304

as suggested in (p.86 in [A.1]). The truncation level _ was varied from 0.8 ~

0.999. Notice that there are some training samples which do not make any

contribution in the density estimate even without using the truncated kernel

function. In other words, due to the numerically finite precision, the value of the

exponential function in Gaussian kernel function becomes (numerical) zero if its

argument is too small.

o_ 50!
.,_ _.

30
"_ [" 20

Z

15

i.... , . ,.. , , ,, ,

10 ...........

0 ,_. . . .

0.80 0.85

12

9

6

• 0

0.90 0.95 1.00

Truncation Level [3

.
r.r.1_

Figure A.3 Percent Average Effective Number of Training Samples versus
Truncation Level.; This shows the percent average effective number of
training samples which have non-zero contribution to the density
estimate and the corresponding average percent difference between
density estimates obtained with and without truncation.; The Truncated
Gaussian kernel function was used with different truncation level _'s.;
the window size was set to h = 0.304.

Figure A.3 shows the average number of effective training samples which give

non-zero values of the exponential function when a truncated Gaussian kernel

function with truncation level _ is used. The number obtained without truncation is

considered as that of _=1.0. There must be error introduced due to the truncation

of the kernel function and the amount of error is measured by the average

percent difference between the two density estimates obtained with and without

truncation as,
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i ...... i ..... , .... =, . .. .... . .....

_x(x)

where fx(x) denotes the density estimate without truncation and fx(x; I_)denotes.

the density estimate with the truncation level set to 13.The expectation in eq_ (A.8)

is obtained by computing the mean over the given 4Q0 test samples. As seen in_

Fig. A.3, even when 13 = 1.0, there were only 38.64% of the training samples

which actually contributed to the density estimate due tQ the numerically fir_te

precision. When _ = 0.999, the effective number of training samples dropped to

16.46%, but there was only 0.19% difference to the average between fx(x) and

fx(x; _). If 13= 0.99, the percent difference was 1.47% with 11.17% of the effective

training samples. Whether or not this error due to truncation is acceptable

depends on each particular application of the estimated density in mind.
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Figure A.4
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---o-- p=o.8
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o_

Percent Average Number of Distance Comp0tation R.; Truncated
Gaussian kernel function with truncation level 13.The parameter e¢ in
the cluster creation condition of eq. (A.6) was varied from 0.01 to 8.;
window size h = 0.304.

As before, while the parameter o_in eq. (A.6) is varied from 0.01 to 8, the average

number of actual distance computations is shown in Fig. A.4. As the truncation

level 13becomes larger, the amount savings in distance computation increases. In

both Fig. A.3 and A.4, very small or very large values Of o_ were not acceptable,

since they produce too many small clusters or just one or two large clusters. With
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o_in the range of 0.2 ~ 1.0, it is observed that about 40 ~ 80% savings in distance

computation can be achieved.

A.4 Conclusions

In this appendix, a computationally efficient Parzen density estimation algorithm

is developed by adopting the idea of the branch and bound method with

clustering. Not only those kernel functions having finite support for non-zero

values such as the Epanechnikov kernel function, but also the kernel functions

having non-zero values over the entire feature space was applicable with this

algorithm with truncation. By choosing a proper parameter setting for Dc for new

cluster generation, the savings in computation is observed to be maximized. The

experimental results verified significant savings in computation.
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APPENDIX B Program Ust for parti_!!y Supervised Classification

Program list for the partially classifiers discussed in this report is available upon

request.
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